Home Work of Week 9

Deadline: 9:00am, December 13 (Thursday), 2018

1. Prove that, for every integer n, there exists a way to 2-color the edges of K_{x} so that there is no monochromatic clique of size k when $x=n-\binom{n}{k} 2^{1-\binom{k}{2}}$. Note that K_{x} stands for the x-vertex complete graph. (Hint, start by 2 -coloring the edges of K_{n} and fix things up.)
2. For every integer n, there exists a coloring of the edges of the complete graph K_{n} by two colors so that the total number of monochromatic copies of K_{4} is at most $\binom{n}{4} 2^{-5}$. Design a deterministic, efficient algorithm to find such a coloring.
3. Given an n-vertex undirected graph $G=(V, E)$ and a permutation σ on V, define $S(\sigma) \subseteq V$ as follows: for any $i \in V, i \in S(\sigma)$ if and only if i has no neighbor in G that precedes i in the permutation σ. We know that $S(\sigma)$ is an independent set of G. Design a deterministic, efficient algorithm to produce a permutation σ such that the cardinality of $S(\sigma)$ is at least $\sum_{i=1}^{n} \frac{1}{d_{i}+1}$, where d_{i} is the degree of vertex i in G.
4. Do Bernoulli experiment for 20 trials, using a new 1-Yuan coin. Record the result in a string $s_{1} s_{2} \ldots s_{i} \ldots s_{20}$, where s_{i} is 1 if the $i^{\text {th }}$ trial gets Head, and otherwise is 0 .
