Probabilistic Method and Random Graphs Lecture 7. Random Graphs ¹

Xingwu Liu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

¹The slides are mainly based on Lecture 13 of Ryan O'Donnell's lecture notes of *Probability and Computing* and Chapter 5 of the textbook *Probability and Computing*.

Questions, comments, or suggestions?

< □ > < □ > < □ > < □ > < Ξ > < Ξ > ... Ξ

2/29

Poisson approximation theorem

•
$$(X_1^{(m)}, X_2^{(m)}, \dots X_n^{(m)}) \sim (Y_1^{(\mu)}, Y_2^{(\mu)}, \dots Y_n^{(\mu)} | \sum Y_i^{(\mu)} = m)$$

• $\mathbb{E}[f(X_1^{(m)}, \dots X_n^{(m)})] \le e\sqrt{m}\mathbb{E}[f(Y_1^{(m)}, \dots Y_n^{(m)})]$
• $Pr[\mathcal{E}(X_1^{(m)}, \dots X_n^{(m)})] \le e\sqrt{m}Pr[\mathcal{E}(Y_1^{(m)}, \dots Y_n^{(m)})]$

• $e\sqrt{m}$ can be improved to 2, if f is monotonic in m

Application

- Max. load: $L(n,n) > \frac{\ln n}{\ln \ln n}$ with high probability
- Hashing
 - Hash table: accurate, time-efficient, space-inefficient
 - Info. fingerprint: small error, time-inefficient, space-efficient
 - Bloom filter: small error, time-efficient, more space-efficient

Motivation of studying random graphs

Gigantic graphs are ubiquitous

- Web link network: Teras of vertices and edges
- Phone network: Billions of vertices and edges
- Facebook user network: Billions of vertices and edges
- Human neural networks: 86 Billion vertices, $10^{14} 10^{15}$ edges
- Network of Twitter users, wiki pages ...: size up to millions

What do they look like?

- Impossible to draw and look
- What's meant by 'look like'?

Looking through statistical lens

Part of the statistics

- How dense are the edges, m = O(n) or $\Theta(n^2)$?
- Is it connected?
 - If not connected, the distribution of component size
 - If connected, diameter
- What's the degree distribution?
- What's the girth? How many triangles are there?

Feasible for a single graph?

Yes, but not of the style of a **scientist**

Scientists' concerns

Interconnection

- Do the features necessarily or just happen to appear?
- Do various gigantic graphs have common statistical features?
- What accounts for the statistical difference between them?

Prediction

- What will a newly created gigantic graph be like?
- How is one statistical feature, given some others?

Exploitation (algorithmical)

- How do the features help algorithms? Say, routing, marketing
- What properties of the graphs determine the performance?

Key to solution

Modelling gigantic graphs; random graphs are the best candidate

Intuition: stochastic experiments

- God plays a dice, resulting in a random number
- God plays an amazing toy, resulting in a random graph
 - Amazing toy: a big dice with a graph on each facet

Axiomatic definition of random graphs

Random graph with n vertices

- Sample space: all graphs on n vertices
- Events: every subset of the sample space is an event
- Probability function: any normalized non-negative function on the sample space

\mathcal{G}_n : uniform random graph on n vertices

The probability function has equal value on all graphs

Simple questions on \mathcal{G}_n

Random variable $X: G \mapsto$ the number of edges of G

- What's $\mathbb{E}[X]$?
- What's Var[X]?

Tough? Not easy, at least. Big shots appeared!

$\mathcal{G}_{n,p}$

Stochastic process:

 $\begin{array}{ll} \text{input: } n \text{ and } p \in [0,1] \\ \text{output: indicators } E_{ij} \\ \text{for } i = 1 \cdots n \\ \text{for } j = i + 1 \cdots n \\ E_{ij} \leftarrow \text{Bernoulli}(p) \end{array}$

Proposed in 1959 by Gilbert (1923-2013, American coding theorist and mathematician). Motivated by phone networks.

In one word

 $\mathcal{G}_{n,p}$ is an *n*-vertex graph the existence of each of whose edges is independently determined by tossing a *p*-coin.

Erdös&Rényi get the naming credit due to extensive work

Uniform distribution over *n*-vertex graphs

 $\mathcal{G}_{n,\frac{1}{2}}\sim \mathcal{G}_n,$ the axiomatic definition What does it look like?

The number of edges

In $\mathcal{G}_{n,\frac{1}{2}}$, the number of edges has $Bin\left(\binom{n}{2},\frac{1}{2}\right)$ distribution. Expectation: $\frac{n(n-1)}{4}$. Variance: $\frac{n(n-1)}{8}$. The expected degree of vertex i: $\frac{n-1}{2}$

Concentration theorem

In $\mathcal{G}_{n+1,\frac{1}{2}}$, all vertices have degree between $\frac{n}{2} - \sqrt{n \ln n}$ and $\frac{n}{2} + \sqrt{n \ln n}$ w.h.p.

Proof: Chernoff bound + Union Bound

Let D_i be the degree of vertex i. $\Pr[D_i > \frac{n}{2} + \sqrt{n \ln n}] \le e^{-(2\sqrt{\ln n})^2/2} = n^{-2}.$ Likewise, $\Pr[D_i < \frac{n}{2} - \sqrt{n \ln n}] \le n^{-2}.$ By union bound, $\Pr[\frac{n}{2} - \sqrt{n \ln n} \le D_i \le \frac{n}{2} - \sqrt{n \ln n}$ for all $i] \ge 1 - \frac{2(n+1)}{n^2} = 1 - O(\frac{1}{n})$

Another generative model of random graphs

$\mathcal{G}_{n,m}$

Randomly *independently* assign m edges among n vertices. Equiv: All n-vertex m-edge graphs, uniformly distributed.

Proposed by Erdös&Rényi in 1959, and independently by Austin, Fagen, Penney and Riordan in 1959.Hard to study, due to dependency among edges.Can we decouple the edges? Yes, sort of.

Decoupling the edges

 $\mathcal{G}_{n,m} \sim \mathcal{G}_{n,p} | (m \text{ edges exist})$ Recall the Poisson Approximation Theorem

Both are called Erdös-Rényi model. $\mathcal{G}_{n,p}$ is more popular.

Probability of having isolated vertices

In random graph $\mathcal{G}_{n,m}$ with $m = \frac{n \ln n + cn}{2}$, the probability that there is an isolated vertex converges to $1 - e^{-e^{-c}}$.

Proof (By myself)

Basically, follow the proof of the theorem about coupon collecting. It is reduced to $\mathcal{G}_{n,p}$ with $p=\frac{\ln n+c}{n}.$

Problem reduction

In $\mathcal{G}_{n,p}$ with $p = \frac{\ln n + c}{n}$, the probability that there is an isolated vertex converges to $1 - e^{-e^{-c}}$.

Proof

$$\begin{split} E_i: & \text{the event that vertex } v_i \text{ is isolated in } \mathcal{G}_{n,p}. \\ E: & \text{the event that at least one vertex is isolated in } \mathcal{G}_{n,p}. \\ \Pr(E) &= \Pr(\cup_{i=1}^n E_i) \\ &= -\sum_{k=1}^n (-1)^k \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n} \Pr(\cap_{j=1}^k E_{i_j}). \end{split}$$

By Bonferroni inequalities, $\Pr(E) \leq -\sum_{k=1}^{l} (-1)^k \sum_{1 \leq i_1 < \ldots < i_k \leq n} \Pr(\cap_{j=1}^k E_{i_j}), \text{for odd } l.$

$$\Pr(\bigcap_{j=1}^{k} E_{i_j}) = (1-p)^{(n-k)k + \frac{k(k-1)}{2}} = (1-p)^{nk - \frac{k(k+1)}{2}}.$$

$$\Pr(E) \le -\sum_{k=1}^{l} (-1)^k \binom{n}{k} (1-p)^{nk - \frac{k(k+1)}{2}}, \text{for odd } l$$

$$\binom{n}{k} (1-p)^{nk-\frac{k(k+1)}{2}} > \frac{(n-k)^k}{k!} (1-p)^{nk-\frac{k(k+1)}{2}} \stackrel{n \to \infty}{=} \frac{e^{-ck}}{k!}.$$
$$\binom{n}{k} (1-p)^{nk-\frac{k(k+1)}{2}} < \frac{n^k}{k!} (1-p)^{nk-\frac{k(k+1)}{2}} \stackrel{n \to \infty}{=} \frac{e^{-ck}}{k!}$$

= ↓) ((* 14 / 29

For odd l

$$\overline{\lim}_{n \to \infty} \Pr(E) \le -\sum_{k=1}^{l} \frac{(-e^{-c})^k}{k!} = 1 - \sum_{k=0}^{l} \frac{(-e^{-c})^k}{k!}$$

For even l, likewise

$$\underline{\lim}_{n \to \infty} \Pr(E) \ge -\sum_{k=1}^{l} \frac{(-e^{-c})^k}{k!} = 1 - \sum_{k=0}^{l} \frac{(-e^{-c})^k}{k!}$$

Altogether

Let
$$l$$
 go to infinity. We have
 $\underline{\lim}_{n\to\infty} \Pr(E) = \overline{\lim}_{n\to\infty} \Pr(E) = 1 - e^{-e^{-c}}$
So, $\lim_{n\to\infty} \Pr(E) = 1 - e^{-e^{-c}}$

Reflection on $\mathcal{G}_{n,p}$

Homogeneity in degree

Degree of each vertex is Bin(n-1, p). Highly concentrated, as proven

Dense for constant p

 $m=\Theta(n^2)$ whp. Billions of vertices with zeta edges, too dense

Unfit for real-world networks

Heterogeneous in degree distribution.

Sort of sparse

Remark

 $\mathcal{G}_{n,p}$ -type randomness does appear in big graphs. Szemerédi Regularity Lemma (1975-1978)

When the graph has constant average degree

Consider a social network with average degree 150 (Dunbar's #). Let $p = \frac{150}{n}$. Does it work?

Too concentrated in degree

 $\begin{array}{l} D_i \sim {\rm Bin}(n-1,150/n) \approx {\rm Poi}(150). \\ {\rm Union \ bound \ implies \ concentration \ around \ 150.} \\ {\rm e.g. \ } {\rm Pr}(D_i \leq 25) \leq 25 \frac{e^{-150} 150^{25}}{25!} \approx 25 \times 10^{-36} \leq 10^{-34}. \end{array}$

Degree sequence of an n-vertex graph G

 $n_0, n_1, \dots n_n$ are integers. $n_i =$ number of vertices in G with degree exactly i. $\sum n_i = n, \sum i * n_i = 2m$

Random graphs with specified degree sequence

Introduced by Bela Bollobas around 1980.

Produced by a random process:

Step 1. Decide what degree each vertex will have.

Step 2. Blow each vertex up into a group of 'mini-vertices'.

- Step 3. Uniformly randomly, perfectly match these vertices.
- Step 4. Merge each group into one vertex.

Finally, fix multiple edges and self-loops if you like

Example

$$n = 5, n_0 = 0, n_1 = 1, n_2 = 2, n_3 = 0, n_4 = 1, n_5 = 1$$

Other random graph models

Practical graphs are formed organically by "randomish" processes.

Preferential attachment model Propsed by Barabasi&Albert in 1999 Scale-free network First by Scottish statistician Udny Yule in 1925 to study plant evolution

Rewired ring model Propsed by Watts&Strogatz in 1998 Small world network

Threshold: the most striking phenomenon of random graphs. Extensively studied in the Erdös-Rényi model $\mathcal{G}_{n,p}$.

Threshold functions

Given f(n) and event E, if E does not happen on $\mathcal{G}_{n,o(f)}$ whp but happens on $\mathcal{G}_{n,w(f)}$ whp, f(n) is a threshold function of E.

Sharp threshold functions

Given f(n) and event E, if E does not happen on $\mathcal{G}_{n,cf}$ whp for any c < 1 but happens whp for any c > 1, f(n) is a sharp threshold function of E.

Example

 $f(n) = \frac{\ln n}{n}$ is a sharp threshold function for connectivity.

 $f(n) = \frac{1}{n}$ is a sharp threshold function for large components.

$$f(n) = \frac{1}{n}$$
 is a threshold function for cycles.

Application: Hamiltonian cycles in random graphs

Objective

Find a Hamiltonian cycle if it exists in a given graph. NP-complete, but ... Efficiently solvable w.h.p. for $\mathcal{G}_{n,p}$, when p is big enough.

How?

A simple algorithm (use adjacency list model):

- Initialize the path to be a vertex.
- repeatedly use an unused edge to extend or rotate the path until a Hamiltonian cycle is obtained or a failure is reached.

Performance

Running time $\leq \#$ edges \Rightarrow inaccurate. This does not matter if accurate w.h.p. Challenge: hard to analyze, due to dependency. Essentially, extending or rotating is to sample a vertex. If an unseen vertex is sampled, add it to the path. When all vertices are seen, a Hamiltonian path is obtained, and almost end.

Familiar? Yes! Coupon collecting. If we can modify the algorithm so that *sampling* at every step is uniformly random over all vertices, coupon collector problem results guarantee to find a Hamiltonian path in polynomial time. It is not so difficult to close the path.

Improvements

- Every step follows either unseen or seen edges, or reverse the path, with certain probability.
- Independent adjacency list, simplifying probabilistic analysis of random graphs (for general purpose)

Modified Hamiltonian Cycle Algorithm

Under the independent adjacency list model

- Start with a randomly chosen vertex
- Repeat:
 - reverse the path with probability $\frac{1}{n}$
 - sample a used edge and rotate with probability $\frac{|used-edges|}{n}$
 - select the first unused edge with the rest probability
- Until a Hamiltonian cycle is found or fail

An important fact

Let V_t be the head of the path after the t-th step. If the unused-edges list of the head at time t - 1 is non-empty, $\Pr(V_t = u_t | V_{t-1} = u_{t-1}, ... V_0 = u_0) = \frac{1}{n}$ for $\forall u_i$.

Coupon collector results apply: If no unused edges lists are exhausted, a Hamiltonian path is found in $O(n \ln n)$ iterations w.h.p., and likewise for closing the path.

Theorem

If in the independent adjacency list model, each edge (u, v) appear on u's list with probability $q \geq \frac{20 \ln n}{n}$, The algorithm finds a Hamiltonian cycle in $O(n \ln n)$ iterations with probability $1 - O(\frac{1}{n})$.

Basic idea of the proof

 $\mathsf{Fail} \Rightarrow$

- \mathcal{E}_1 : no unused-edges list is exhausted in $3n \ln n$ steps but fail.
 - \mathcal{E}_{1a} : Fail to find a Hamiltonian path in $2n \ln n$ steps.
 - \mathcal{E}_{1b} : The Hamiltonian path does not get closed in $n \ln n$ steps.
- \mathcal{E}_2 : an unused-edges list is exhausted in $3n \ln n$ steps.
 - $\mathcal{E}_{2a}: \geq 9 \ln n$ unused edges of a vertex are removed in $3n \ln n$ steps.
 - \mathcal{E}_{2b} : a vertex initially has $< 10 \ln n$ unused edges.

\mathcal{E}_{1a} : Fail to find a Hamiltonian path in $2n\ln n$ steps

The probability that a specific vertex is not reached in $2n \ln n$ steps is $(1 - 1/n)^{2n \ln n} \le e^{-2 \ln n} = n^{-2}$. By the union bound, $\Pr(\mathcal{E}_{1a}) \le n^{-1}$.

\mathcal{E}_{1b} : The Hamiltonian path does not get closed in $n \ln n$ steps

Pr(close the path at a specific step) =
$$n^{-1}$$
.
 $\Rightarrow \Pr(\mathcal{E}_{1b}) = (1 - 1/n)^{n \ln n} \le e^{-\ln n} = n^{-1}$.

Proof: \mathcal{E}_{2a} and \mathcal{E}_{2b} have low probability

\mathcal{E}_{2a} : $\geq 9 \ln n$ unused edges of a vertex are removed in $3n \ln n$ steps

The number of edges removed from a vertex v's unused edges list \leq the number X of times that v is the head. $X \sim Bin(3n \ln n, n^{-1}) \Rightarrow \Pr(X \geq 9 \ln n) \leq (e^2/27)^{3 \ln n} \leq n^{-2}$. By the union bound, $\Pr(\mathcal{E}_{2a}) \leq n^{-1}$.

\mathcal{E}_{2b} : a vertex initially has $< 10 \ln n$ unused edges

Let Y be the number of initial unused edges of a specific vertex. $\mathbb{E}[Y] \ge (n-1)q \ge 20(n-1)\ln n/n \ge 19\ln n \text{ asymptotically.}$ Chernoff bounds $\Rightarrow \Pr(Y \le 10\ln n) \le e^{-19(9/19)^2\ln n/2} \le n^{-2}.$ Union bound $\Rightarrow \Pr(\mathcal{E}_{2b}) \le n^{-1}.$

Altogether

$$\Pr(fail) \le \Pr(\mathcal{E}_{1a}) + \Pr(\mathcal{E}_{1b}) + \Pr(\mathcal{E}_{2a}) + \Pr(\mathcal{E}_{2b}) \le \frac{4}{n}.$$

Corollary

The modified algorithm finds a Hamiltonian cycle on random graph $\mathcal{G}_{n,p}$ with probability $1 - O(\frac{1}{n})$ if $p \ge 40 \frac{\ln n}{n}$.

Proof

Define
$$q \in [0, 1]$$
 be such that $p = 2q - q^2$.
We have two facts:

• The independent adjacency list model with parameter q is equivalent to $\mathcal{G}_{n,p}$.

•
$$q \ge \frac{p}{2} \ge 20\frac{\ln n}{n}$$
.