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1The slides are mainly based on Lecture 13 of Ryan O’Donnell’s lecture
notes of Probability and Computing and Chapter 5 of the textbook Probability
and Computing.
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Questions, comments, or suggestions?
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A recap of Lecture 6

Poisson approximation theorem
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Application

Max. load: L(n, n) > lnn
ln lnn with high probability

Hashing

Hash table: accurate, time-efficient, space-inefficient
Info. fingerprint: small error, time-inefficient, space-efficient
Bloom filter: small error, time-efficient, more space-efficient

3 / 29



Motivation of studying random graphs

Gigantic graphs are ubiquitous

Web link network: Teras of vertices and edges

Phone network: Billions of vertices and edges

Facebook user network: Billions of vertices and edges

Human neural networks: 86 Billion vertices, 1014 − 1015 edges

Network of Twitter users, wiki pages ...: size up to milllions

What do they look like?

Impossible to draw and look

What’s meant by ‘look like’?
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Looking through statistical lens

Part of the statistics

How dense are the edges, m = O(n) or Θ(n2)?

Is it connected?

If not connected, the distribution of component size
If connected, diameter

What’s the degree distribution?

What’s the girth? How many triangles are there?

Feasible for a single graph?

Yes, but not of the
style of a scientist
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Scientists’ concerns

Interconnection

Do the features necessarily or just happen to appear?

Do various gigantic graphs have common statistical features?

What accounts for the statistical difference between them?

Prediction

What will a newly created gigantic graph be like?

How is one statistical feature, given some others?

Exploitation (algorithmical)

How do the features help algorithms? Say, routing, marketing

What properties of the graphs determine the performance?

Key to solution

Modelling gigantic graphs; random graphs are the best candidate
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Definition of random graphs

Intuition: stochastic experiments

God plays a dice, resulting in a random number

God plays an amazing toy, resulting in a random graph

Amazing toy: a big dice with a graph on each facet

Axiomatic definition of random graphs

Random graph with n vertices

Sample space: all graphs on n vertices

Events: every subset of the sample space is an event

Probability function: any normalized non-negative function on
the sample space
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An example

Gn: uniform random graph on n vertices

The probability function has equal value on all graphs

Simple questions on Gn
Random variable X : G 7→ the number of edges of G

What’s E[X]?

What’s V ar[X]?

Tough? Not easy, at least.
Big shots appeared!
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A generative model of random graphs

Gn,p
Stochastic process:

input: n and p ∈ [0, 1]
output: indicators Eij

for i = 1 · ·n
for j = i + 1 · ·n
Eij ← Bernoulli(p)

Proposed in 1959 by Gilbert
(1923-2013, American coding
theorist and mathematician).
Motivated by phone networks.

In one word

Gn,p is an n-vertex graph the existence of each of whose edges is
independently determined by tossing a p-coin.

Erdös&Rényi get the naming credit due to extensive work
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An example: p = 1
2

Uniform distribution over n-vertex graphs

Gn, 1
2
∼ Gn, the axiomatic definition

What does it look like?

The number of edges

In Gn, 1
2

, the number of edges has Bin
((
n
2

)
, 12
)

distribution.

Expectation: n(n−1)
4 .

Variance: n(n−1)
8 .

The expected degree of vertex i: n−1
2
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Homogeneous degree distribution

Concentration theorem

In Gn+1, 1
2

, all vertices have degree between n
2 −
√
n lnn and

n
2 +
√
n lnn w.h.p.

Proof: Chernoff bound + Union Bound

Let Di be the degree of vertex i.

Pr[Di >
n
2 +
√
n lnn] ≤ e−(2

√
lnn)2/2 = n−2.

Likewise, Pr[Di <
n
2 −
√
n lnn] ≤ n−2.

By union bound, Pr[n2 −
√
n lnn ≤ Di ≤ n

2 −
√
n lnn for all i] ≥

1− 2(n+1)
n2 = 1−O( 1

n)
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Another generative model of random graphs

Gn,m
Randomly independently assign m edges among n vertices.
Equiv: All n-vertex m-edge graphs, uniformly distributed.

Proposed by Erdös&Rényi in 1959, and
independently by Austin, Fagen, Penney and Riordan in 1959.

Hard to study, due to dependency among edges.
Can we decouple the edges? Yes, sort of.

Decoupling the edges

Gn,m ∼ Gn,p|(m edges exist)
Recall the Poisson Approximation Theorem

Both are called Erdös-Rényi model.
Gn,p is more popular.
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Application of the decoupling

Probability of having isolated vertices

In random graph Gn,m with m = n lnn+cn
2 , the probability that

there is an isolated vertex converges to 1− e−e
−c

.

Proof (By myself)

Basically, follow the proof of the theorem about coupon collecting.
It is reduced to Gn,p with p = lnn+c

n .

Problem reduction

In Gn,p with p = lnn+c
n , the probability that there is an isolated

vertex converges to 1− e−e
−c

.
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Proof

Ei: the event that vertex vi is isolated in Gn,p.
E: the event that at least one vertex is isolated in Gn,p.
Pr(E) = Pr(∪ni=1Ei)

= −
∑n

k=1(−1)k
∑

1≤i1<i2<...<ik≤n Pr(∩kj=1Eij ).

By Bonferroni inequalities,
Pr(E) ≤ −

∑l
k=1(−1)k

∑
1≤i1<...<ik≤n Pr(∩kj=1Eij ), for odd l.

Pr(∩kj=1Eij ) = (1− p)(n−k)k+
k(k−1)

2 = (1− p)nk−
k(k+1)

2 .

Pr(E) ≤ −
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k=1(−1)k
(
n
k

)
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2 , for odd l
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n
k

)
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Continued proof

For odd l

limn→∞ Pr(E) ≤ −
∑l

k=1
(−e−c)k

k! = 1−
∑l

k=0
(−e−c)k

k!

For even l, likewise

limn→∞ Pr(E) ≥ −
∑l

k=1
(−e−c)k

k! = 1−
∑l

k=0
(−e−c)k

k!

Altogether

Let l go to infinity. We have
limn→∞ Pr(E) = limn→∞ Pr(E) = 1− e−e

−c
.

So, limn→∞ Pr(E) = 1− e−e
−c
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Reflection on Gn,p

Homogeneity in degree

Degree of each vertex is Bin(n− 1, p).
Highly concentrated, as proven

Dense for constant p

m = Θ(n2) whp.
Billions of vertices with zeta edges, too dense

Unfit for real-world networks

Heterogeneous in degree distribution.
Sort of sparse

Remark

Gn,p-type randomness does appear in big graphs.
Szemerédi Regularity Lemma (1975-1978)
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A tentative model for sparse graphs

When the graph has constant average degree

Consider a social network with average degree 150 (Dunbar’s #).
Let p = 150

n . Does it work?

Too concentrated in degree

Di ∼ Bin(n− 1, 150/n) ≈ Poi(150).
Union bound implies concentration around 150.
e.g. Pr(Di ≤ 25) ≤ 25 e

−15015025

25! ≈ 25× 10−36 ≤ 10−34.
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Random graphs with a given degree sequence

Degree sequence of an n-vertex graph G

n0, n1, ...nn are integers.
ni = number of vertices in G with degree exactly i.∑

ni = n,
∑

i ∗ ni = 2m

Random graphs with specified degree sequence

Introduced by Bela Bollobas around 1980.
Produced by a random process:
Step 1. Decide what degree each vertex will have.
Step 2. Blow each vertex up into a group of ‘mini-vertices’.
Step 3. Uniformly randomly, perfectly match these vertices.
Step 4. Merge each group into one vertex.
Finally, fix multiple edges and self-loops if you like
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Example

n = 5, n0 = 0, n1 = 1, n2 = 2, n3 = 0, n4 = 1, n5 = 1
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Other random graph models

Practical graphs are formed organically by “randomish” processes.

Preferential attachment model
Propsed by Barabasi&Albert in 1999
Scale-free network
First by Scottish statistician Udny Yule

in 1925 to study plant evolution

Rewired ring model
Propsed by Watts&Strogatz in 1998
Small world network
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Threshold phenomena

Threshold: the most striking phenomenon of random graphs.
Extensively studied in the Erdös-Rényi model Gn,p.

Threshold functions

Given f(n) and event E, if E does not happen on Gn,o(f) whp but
happens on Gn,w(f) whp, f(n) is a threshold function of E.

Sharp threshold functions

Given f(n) and event E, if E does not happen on Gn,cf whp for
any c < 1 but happens whp for any c > 1, f(n) is a sharp
threshold function of E.
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Example

f(n) = lnn
n is a sharp threshold function for connectivity.

f(n) = 1
n is a sharp threshold function for large components.

f(n) = 1
n is a threshold function for cycles.
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Application: Hamiltonian cycles in random graphs

Objective

Find a Hamiltonian cycle if it exists in a given graph.
NP-complete, but ...
Efficiently solvable w.h.p. for Gn,p, when p is big enough.

How?

A simple algorithm (use adjacency list model):

Initialize the path to be a vertex.

repeatedly use an unused edge to extend or rotate the path
until a Hamiltonian cycle is obtained or a failure is reached.

Performance

Running time ≤ #edges ⇒ inaccurate.
This does not matter if accurate w.h.p.
Challenge: hard to analyze, due to dependency.
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A closer look at the algorithm

Essentially, extending or rotating is to sample a vertex.If an unseen
vertex is sampled, add it to the path. When all vertices are seen, a
Hamiltonian path is obtained, and almost end.

Familiar? Yes! Coupon collecting.
If we can modify the algorithm so that sampling at every step is
uniformly random over all vertices, coupon collector problem
results guarantee to find a Hamiltonian path in polynomial time. It
is not so difficult to close the path.

Improvements

Every step follows either unseen or seen edges, or reverse the
path, with certain probability.

Independent adjacency list, simplifying probabilistic analysis of
random graphs (for general purpose)
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Modified Hamiltonian Cycle Algorithm

Under the independent adjacency list model

Start with a randomly chosen vertex

Repeat:

reverse the path with probability 1
n

sample a used edge and rotate with probability |used−edges|n
select the first unused edge with the rest probability

Until a Hamiltonian cycle is found or fail

An important fact

Let Vt be the head of the path after the t-th step. If the
unused-edges list of the head at time t− 1 is non-empty,
Pr(Vt = ut|Vt−1 = ut−1, ...V0 = u0) = 1

n for ∀ui.

Coupon collector results apply: If no unused edges lists are
exhausted, a Hamiltonian path is found in O(n lnn) iterations
w.h.p., and likewise for closing the path.
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Performance and Efficiency

Theorem

If in the independent adjacency list model, each edge (u, v) appear
on u’s list with probability q ≥ 20 lnn

n , The algorithm finds a
Hamiltonian cycle in O(n lnn) iterations with probability 1−O( 1

n).

Basic idea of the proof

Fail ⇒
E1: no unused-edges list is exhausted in 3n lnn steps but fail.

E1a: Fail to find a Hamiltonian path in 2n lnn steps.
E1b: The Hamiltonian path does not get closed in n lnn steps.

E2: an unused-edges list is exhausted in 3n lnn steps.

E2a: ≥ 9 lnn unused edges of a vertex are removed in 3n lnn
steps.
E2b: a vertex initially has < 10 lnn unused edges.
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Proof: E1a and E1b have low probability

E1a: Fail to find a Hamiltonian path in 2n lnn steps

The probability that a specific vertex is not reached in 2n lnn
steps is (1− 1/n)2n lnn ≤ e−2 lnn = n−2.
By the union bound, Pr(E1a) ≤ n−1.

E1b: The Hamiltonian path does not get closed in n lnn steps

Pr(close the path at a specific step) = n−1.
⇒ Pr(E1b) = (1− 1/n)n lnn ≤ e− lnn = n−1.
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Proof: E2a and E2b have low probability

E2a: ≥ 9 lnn unused edges of a vertex are removed in 3n lnn steps

The number of edges removed from a vertex v’s unused edges list
≤ the number X of times that v is the head.
X ∼ Bin(3n lnn, n−1)⇒ Pr(X ≥ 9 lnn) ≤ (e2/27)3 lnn ≤ n−2.
By the union bound, Pr(E2a) ≤ n−1.

E2b: a vertex initially has < 10 lnn unused edges

Let Y be the number of initial unused edges of a specific vertex.
E[Y ] ≥ (n− 1)q ≥ 20(n− 1) lnn/n ≥ 19 lnn asymptotically.
Chernoff bounds ⇒ Pr(Y ≤ 10 lnn) ≤ e−19(9/19)

2 lnn/2 ≤ n−2.
Union bound ⇒ Pr(E2b) ≤ n−1.

Altogether

Pr(fail) ≤ Pr(E1a) + Pr(E1b) + Pr(E2a) + Pr(E2b) ≤ 4
n .
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The algorithm on random graph Gn,p

Corollary

The modified algorithm finds a Hamiltonian cycle on random graph
Gn,p with probability 1−O( 1

n) if p ≥ 40 lnn
n .

Proof

Define q ∈ [0, 1] be such that p = 2q − q2.
We have two facts:

The independent adjacency list model with parameter q is
equivalent to Gn,p.

q ≥ p
2 ≥ 20 lnn

n .
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