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1The slides are mainly based on Chapter 5 of the textbook Probability and
Computing and Lecture 12 of Ryan O’Donnell’s lecture notes of Probability and
Computing.
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Preface

Questions, comments, or suggestions?
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A recap of Lecture 5

Poisson Convergence (LSN)

Assume that Xn ∼ Bin(n, pn) with limn→∞ npn = λ. For any

fixed k, limn→∞ Pr(Xn = k) = e−λλk

k! .
Valid when weakly dependent.
Almost Valid when strongly dependent (Stein-Chen Theorem).

Joint distribution of bin loads

Max load: L(n, n) < 3 lnn
ln lnn with high probability.

Pr(X1 = k1, ...Xn = kn) = m!
k1!k2!···kn!nm

Poisson approximation theorem

(X
(m)
1 , X

(m)
2 , ...X

(m)
n ) ∼ (Y

(µ)
1 , Y

(µ)
2 , ...Y

(µ)
n |

∑
Y

(µ)
i = m)

Application: coupon collector’s problem

limn→∞ Pr(X > n lnn+ cn) = 1− e−e−c
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Poisson approximation is nice but ...

Hard to use due to conditioning.

Can we remove the condition?
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Condition-free Poisson Approximation

Notation

X
(m)
i : the load of bin i in (m,n)-model.

Y
(m)
i : independent Poisson r.v.s with expectation m

n .

Theorem

For any non-negative n-ary function f , we have

E[f(X
(m)
1 , ...X

(m)
n )] ≤ e

√
mE[f(Y

(m)
1 , ...Y

(m)
n )].

Remark

Unlike (X
(m)
1 , X

(m)
2 , ...X

(m)
n ) ∼ (Y

(µ)
1 , Y

(µ)
2 , ...Y

(µ)
n |

∑
Y

(µ)
i = m),

the mean of the Poisson distribution is m
n , not arbitrary.

Condition-freedom at the cost of approximation.
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Proof

E[f(Y
(m)
1 , ...Y (m)

n )]

=
∑
k

E[f(Y
(m)
1 , ...Y (m)

n )|
∑
i

Y
(m)
i = k] Pr(

∑
i

Y
(m)
i = k)

≥ E[f(Y
(m)
1 , ...Y (m)

n )|
∑
i

Y
(m)
i = m] Pr(

∑
i

Y
(m)
i = m)

= E[f(X
(m)
1 , ...X(m)

n )] Pr(
∑
i

Y
(m)
i = m).

∑
i Y

(m)
i ∼ Poi(m)⇒ Pr(

∑
i Y

(m)
i = m) = mme−m

m! ≥ 1
e
√
m

since

m! < e
√
m(me−1)m.

Remark

E[f(X
(m)
1 , ...X

(m)
n )] ≤ 2E[f(Y

(m)
1 , ...Y

(m)
n )] if f is monotonic in m
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In Terms of Probability

Any event that takes place with probability p in the independent
Poisson coupling takes places in Bins&Balls setting with probability
at most pe

√
m

If the probability of an event in Bins&Balls is monotonic in m, it is
at most twice of that in the independent Poisson coupling

Remark

Use approximate experiments to bound the exact-case probability.
Powerful in bounding the probability of rare events in Bins&Balls.
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Application

Lower bound of max load in (n, n)-model

Asymptotically, Pr(E) ≤ 1
n , where E is the event that the max.

load in the (n, n)-Bins&Balls model is smaller than lnn
ln lnn .

Remark: In fact, the max. load is Θ
(

lnn
ln lnn

)
w.h.p.

Proof

In the Poisson approximation, a bin has at least M = lnn
ln lnn balls

with probability at least 1
eM ! ⇒ Pr(E ′) ≤

(
1− 1

eM !

)n ≤ e− n
eM ! .

M ! ≤ e
√
M(e−1M)M ≤M(e−1M)M

⇒ lnM ! ≤ lnn− ln lnn− ln(2e)⇒M ! ≤ n
2e lnn .

Altogether, Pr(E) ≤ e
√
nPr(E ′) ≤ e

√
n

n2 ≤ 1
n .
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Application: Hashing

Used to look up records, protect data, find duplications ...

Membership problem: password checker

Binary search vs Hashing

Hash table (1953, H. P. Luhn @IBM)

Hash functions: efficient, deterministic, uniform, non-invertible
Random: coin tossing, SUHA
SHA-1 (broken by Wang et al., 2005)

Bins&Balls model

Efficiency

Search time for m words in n bins: expected vs worst.
Space: ≥256m bits if each word has 256 bits.

Potential wasted space: 1
e in the case of m = n.

Trade space for time. Can we improve space-efficiency?
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Information Fingerprint

Fingerprint

Succinct identification of lengthy information

Fingerprint hashing

Fingerprinting  sorting fingerprints (rather than original data)
 binary search.

Trade time for space

Performance

False positive: due to loss of information
No other errors
Partial correction using white lists
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False positive

Probability of a false positive: m words, b bits

Fingerprint of an acceptable differs from that of a bad: 1− 1
2b

.

Probability of a false positive: 1−
(
1− 1

2b

)m ≥ 1− e−
m

2b .

Determine b

For a constant c, false positive < c⇒ e
−m

2b ≥ 1− c.
So, b ≥ log2

−m
ln(1−c) = Ω(lnm).

If b ≥ 2 log2m, false positive < 1
m .

216 words, 32-bit fingerprints, false positive < 2−16.
Save a factor of 8 if each word has 256 bits.

Can more space be saved while getting more time-efficient?
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Bloom Filter

1970, CACM, by Burton H. Bloom.

Used in Bigtable and HBase.

Basic idea

Hash table + fingerprinting
Illustration

False positive is the only source of errors.

False positive: m words, n-bit array, k mappings

A specific bit is 0 with probability
(
1− 1

n

)km ≈ e− kmn , p.
Resonable to assume that a fraction p of bits are 0.

By Poisson approximation and Chernoff bounds.

False positive probability: f ,
(

1−
(
1− 1

n

)km)k ≈ (1− e−
km
n

)k
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Determine k for fixed m,n

Objective

Minimize f .
Dilemma of k: chances to find a 0-bit vs the fraction of 0-bits.

Optimal k

d ln f
dk = ln

(
1− e−

km
n

)
+ km

n
e−

km
n

1−e−
km
n

.

d ln f
dk |k= n

m
ln 2 = 0.

f |k= n
m

ln 2 = 2−k ≈ 0.6185n/m.

f < 0.02 if n = 8m, and f < 2−16 if n = 23m, saving 1/4 space

Remark

Fix n/m, the #bits per item, and get a constant error probability.
In fingerprint hashing, Ω(lnm) bits per item guarantee a constant
error probability

13 / 14



Reference

Lecture 12 of the CMU lecture notes by Ryan O’Donnell.
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