## Homework of Week 6

## Deadline: 9:00am, November 22(Thursday), 2018

1. Consider the probability that every bin receives exactly one ball when $n$ balls are thrown randomly into $n$ bins.

- Give an upper bound on this probability using the condition-free Poisson approximation.
- Determine the exact probability of this event.

2. Let $X_{i}^{(m)}$ be the number of balls in bin $i$ when $m$ balls are independently and uniformly thrown at random into $n$ bins, and $Y_{i}^{(m)}, 1 \leq i \leq n$, are independent Poisson random variables each having expectation $m / n$. Assume that $f$ is a nonnegative function.

- Prove that if $E\left[f\left(X_{1}^{(m)}, \ldots X_{n}^{(m)}\right)\right]$ is monotonically increasing in $m$, then $E\left[f\left(X_{1}^{(m)}, \ldots X_{n}^{(m)}\right)\right] \leq 2 E\left[f\left(Y_{1}^{(m)}, \ldots Y_{n}^{(m)}\right)\right]$. (Hint: Show that $E\left[f\left(Y_{1}^{(m)}, \ldots Y_{n}^{(m)}\right)\right] \geq$ $E\left[f\left(X_{1}^{(m)}, \ldots X_{n}^{(m)}\right)\right] \operatorname{Pr}\left(\sum Y_{i}^{(m)} \geq m\right)$ and $\operatorname{Pr}\left(\sum Y_{i}^{(m)} \geq m\right) \geq 1 / 2$.)
- (Bonus score 5 points) If $E\left[f\left(X_{1}^{(m)}, \ldots X_{n}^{(m)}\right)\right]$ is monotonically decreasing in $m$, then $E\left[f\left(X_{1}^{(m)}, \ldots X_{n}^{(m)}\right)\right] \leq 2 E\left[f\left(Y_{1}^{(m)}, \ldots Y_{n}^{(m)}\right)\right]$.

3. Bloom filters can be used to estimate set differences. Suppose Alice has a set $X$ and Bob has a set $Y$, both with $n$ elements. For example, the sets might represent their 100 favorite songs. Alice and Bob create Bloom filters of their sets respectively, using the same number of bits $m$ and the same $k$ hash functions. Determine the expected number of bits where our Bloom filters differ as a function of $m, n, k$ and $|X \bigcap Y|$. Explain how this could be used as a tool to find people with the same taste in music more easily than comparing lists of songs directly.
4. Do Bernoulli experiment for 20 trials, using a new 1-Yuan coin. Record the result in a string $s_{1} s_{2} \ldots s_{i} \ldots s_{20}$, where $s_{i}$ is 1 if the $i^{\text {th }}$ trial gets Head, and otherwise is 0 .
