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1The slides are mainly based on Chapter 5 of Probability-and Computing.
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Questions, comments, or suggestions? )
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Review: Large Deviation Theory

Central limit theorem: O(y/n) deviation, no rate information J

Chernoff bounds: large deviation, but loose J

Large deviation theorem: asymptotical, tight vanishing rate

By courtesy of Cramer (1944).
Let X1,...Xy, ... € R be i.i.d. r.v. which satisfy E[e!*?] < oo for
t € R. Then for any t > E[X;], we have

1 n
lim —InP X; > tn) = — A\t — InE[eM1]).
Jm S PR X 2 tn) = —sup(¥t — B[]
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Review: bins-and-balls

General model: m balls independently randomly placed in n bins J

Poisson distribution

Poisson distribution: Pr(X, =r) = e ;.
Law of rare events
Rooted at Law of Small Numbers
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Review: Basic Properties of Poisson distribution

Low-order moments
E[X,] = Var(X,] = u.

Moment generation function

MXM (t) = E[etXu] = Zk ei]:guk eth = eu(et_l).

Additive

By uniqueness of moment generation functions,
Xy, + Xy, = Xy 44, if independent.

Chernoff-like bounds

1. If z > p, then Pr(X, > z) < et (ep)”
2. If x < p, then Pr(X, <z) < e Hep)”

| \

A\
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Review: Joint Distribution of Bin Loads

Basic observation

Loads of multiple bins are not independent.
Hard to handle

4

e Pr(L>2)>05ifm>+v2nln2
e Birthday paradox

o Pr(L >3 )< Llifm=n

Inlnn/ — n

N

Is there a closed form of Pr(X; = ky,...X,, = k,)?
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Law of Small Numbers (Poisson Convergence)

Poisson convergence of binomial distribution

Assume that X,, ~ Bin(n,py,) with lim,_, np, = A. For any
fixed k, lim,, 00 Pr(X, = k) = £22°.

It is intuitively acceptable (by their figures) ]

It can be used to approximately calculate Binomial distribution
Bin(n,p), but take care.
n > 100,p < 0.01,np < 20.

| \

Error bounds implies the convergence

(k—np) __ k(k—1)
6%72("’]“*1) < Pr(Bin(n,p)=k)
— Pr(Poi(np)=k)

k(k 1)

< ekr—=3
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Proof of the error bounds

Error bounds

p(k—np) k(k—1) .
5T Pr(Bin(n,p)=k)
e 1 2(n—k+1
? ( ) < Pr(Poi(np)=k) se

Pr(Bin(n,p)=k k—1 j n n—
0 < k <n and it's 0 otherwise.

op— EE=1)

2n

v

Upper bound

k-1 G e k(k—1)
Anpp < € Zgmt ntmp=(=k)p < o=

v

Lower bound

_ k=1 _j/n (NP
Appi > e == T=57m tp—(n—k)15;
— Skl _J__p(np=k) p(k=np) __k(k—1)
= “i=lnj I-p >e I-p 20—kt
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Generalize LSN to weak dependence

Poisson convergence with weak dependence

For each n, Bernoulli experiments BT, ...B] with indicators X", if
o lim, , o E[Y,]=AforY, =37 X

. k . Ak
e For any k, lim,, . Zl§i1<...<ik§n Pr(M,_; BZ) = 497

Then Y,, = Poi()\), i.e. Pr(Y,, =j) — e_;!)‘j for any j >0

Basic idea of the proof for j = 0:
Use Taylor series of e=* and Bonferroni inequalities

n T l
o Pr(U B <> (-1 > Pr( B)forodd r
=1 1

i>1 11<12<...<1] =
n T l

o Pr(lU B) > > (-1t > Pr() B!) for even r
i>1 =i i1<ig<..<ip =1
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Remarks on the case of weak dependence

Intuitive explanation

If X is the number of a large collection of nearly independent
events that rarely occur, the X ~ Poi(E[X])

Application

@ The number of people who get their own hats back after a
random permutation of the hats

@ The number of pairs having the same birthday

o The number of isolated vertices in random graph G(n, 122:t¢)

It can be further generalized
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Generalize LSN to strong dependence

Poisson convergence with strong dependence, 1975

Stein-Chen Theorem: If Y, = """ | X;, X; ~ Ber(p;) and
A=>""pi then forany A C Z,

| Pr(Y,, € A) — Pr(Poi(\) € A)| < min {1, i} > piE(U; — Vil].
=1

where U; ~ Y, 14 Vi ~ Y, | X; = 1.

Intuitive explanation

Poisson approximation remains valid even if the Bernoulli r.v.s are
strongly dependent and have different expectations.
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Remarks on the law of small numbers

Law of small numbers vs Law of large numbers (CLT)

@ Poisson approximation vs Normal approximation
@ Small number vs arbitrary number

@ Summation on different sets vs summation on a single
sequence

Relation between Poisson and Normal distribution

Should be related since both approximate binomial distribution.
When A\ — oo, Poisson converges to Normal.
Mee—A

x2
Specifically, limy Za<k<ﬁ - = \/% ff e~z dx.
Where a = (o — \)/vV A, b= (8 — \)/V/X are fixed.

Intuitive argument

Uniqueness+continuity of moment generating functions.
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Joint Distribution of Bin Loads

Pr(Xy = k1, .. Xn = kn) = i

Proof.
By the chain rule, Pr(X; = k1, ..X,, = ky)
= [1720 Pr(Xit1 = k1| X1 = k1, .. Xi = ks).
Note that X;11|(X1 = k1,...X; = k;) is a binomial r.v. of
m — (k1 + -+ + k;) trials with success probability ﬁ

Remark
@ You can also prove by counting

@ Multinomial coefficient W’kn, the number of ways to
allocate m distinct balls into groups of sizes k1, --- , ky,

|
|D
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Silver bullet for Bins&Balls problems?

In principle

—

Yes, since it can be computed

Usually No, since too hard to compute.
Example: what's the probability of having empty bins?

Approximation for computing or insights for analysis \
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Poisson Approximation
At the first glance

The (marginal) load X; ~ Bin(m, ) for each bin i .

1
n
{X1,...Xy} are not independent.
But seemingly the only dependence is that their sum is m. So,

v

A applausible conjecture
The joint distribution (X1, ...X,,) ~ (Y1,..Y,| > Y = m), where
Y; ~ Bin(m, L) are mutually independent.

n

If this is true, good simplification is obtained.

It is NOT the casel
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Why is it not true?

General Fact

Given joint distribution J with marginal distribution My, ..., M,,
independent except M + ... + M,, = m, then the marginals of
(M, oo, Mp| My + ... + M,, = m) are not My, ..., M, i.e.
My, .., Mp|My+ o+ My =m) = J

_ Figure: The joint distribution fx * fy
Figure: fx and fy conditioned on X +Y =1 (the sick line)
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But is the conjecture true for any distribution other than binomiaI?J

Poisson distribution again. (Better than the conjecture)
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Poisson Approximation Theorem

Notation

X™): the load of bin i in (m,n)-model, 1 < i < n.
Y;.(“): independent Poisson r.v.s with expectation p, 1 < i < n.

Theorem

xi™, x{™,  x{™) ~ 0,7, Y@ v = m).

| \

Remarks
@ The equation is independent of u: For any m, the same
Poisson distribution works.
o Since Pr(X{™, x{™ . x{™) « Pr(y{", v, .. 7;{"), the
X;'s are decoupled.
@ The two distributions are exactly equal, not approximate.

By straightforward calculation.
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Coupon Collector Problem

Let X be the number of purchases by n types are collected. Then
for any constant ¢, lim,, oo Pr(X > nlnn+cn) =1— 2@

Remark: Pr(nlnn —4n < X <nlnn + 4n) > 0.98 J

Basic idea of the proof

Use bins-and-balls model and the Poisson approximation.
It holds under the Poisson approximation.
The approximation is actually accurate.
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Proof

Modeling

X > nlnn + cn means that there are empty bins in the
(nlnn 4+ cn, n)-Bins&Balls model.

It holds under the Poisson approximation

Approximation experiment: n bins, each having a Poisson number
of balls with the expectation Inn + c.
Event £: No bin is empty.

Pr(&) = (1- e_(ln”+c))n = (1 - e_c)n — e ¢

n

The approximation is accurate

Obj.: Asymptotically, Pr(€) = Pr(&’') = Pr(€|X = nlnn + cn),
where X is the totally number of balls in the approximation
experiment while £ means no bin is empty in the

(nlnn 4+ cn,n)-Bins&Balls model.
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Proof: Pr(£) = Pr(€|X =nlnn + cn)

Further reduction

Since Pr(€) = Pr(€|X € Z), there should be a neighborhood
N CZst. nlnn+cn €N and Pr(€) ~ Pr(£|X € N).
If \ is not too small or too big, i.e.

o Pr(X e N)~ 1,
o Pr(&|X e N) = Pr(€]X =nlnn+ cn).

We finish the proof by total probability formula.

Does such N exist?
Yes! Try the v/2m In m-neighborhood of m = nlnn + cn.
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Proof: Pr(|X —m| < v2mlnm) — 1

X ~ Poi(m).
By Chernoff bound Pr(X > z) < & lem)® _ ge—m—al

— xT

Pr(X > m+ V2Zmlnm) < ¢ 2 Rm=(mtvemhm) In(l+y/ 20m)
by In(1+42) >z — 2%/2 for 2 >0

—1 +1n3/2m
<e "R 0.

Likewise, Pr(X < m —v2mlInm) — 0. J
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Proof: Pr(&||X —m| < vV2mlnm) ~ Pr(€|X = m)

Pr(£|X = k) increases with k, so

Pr(€]|X =m — v2mlnm) < Pr(&||X —m| < vV2mlnm)
<Pr(é|X =m+ vV2mlnm).

|Pr(€]|X —m| < vV2mlnm) — Pr(€|X = m)|
<Pr(f|X =m+V2mlnm) — Pr(€|X =m — v2mlInm).

The last formula means the probability that there is at least one
empty bin after throwing m — v/2m Inm balls but at least one

among the next 2v/2m Inm balls goes into this bin, hence
< 2v2mInm =0
S :
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