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Preface

Questions, comments, or suggestions?
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Review: Large Deviation Theory

Central limit theorem: O(
√
n) deviation, no rate information

Chernoff bounds: large deviation, but loose

Large deviation theorem: asymptotical, tight vanishing rate

By courtesy of Cramer (1944).
Let X1, ...Xn, ... ∈ R be i.i.d. r.v. which satisfy E[etX1 ] <∞ for
t ∈ R. Then for any t > E[X1], we have

lim
n→∞

1

n
ln Pr(

n∑
i=1

Xi ≥ tn) = − sup
λ>0

(λt− lnE[eλX1 ]).
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Review: bins-and-balls

General model: m balls independently randomly placed in n bins

Distribution of the load X of a bin: Bin(m, 1/n)

When m,n� r, Pr(X = r) ≈ e−µ µ
r

r! with µ = m
n .

Poisson distribution

Poisson distribution: Pr(Xµ = r) = e−µ µ
r

r! .
Law of rare events
Rooted at Law of Small Numbers
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Review: Basic Properties of Poisson distribution

Low-order moments

E[Xµ] = V ar[Xµ] = µ.

Moment generation function

MXµ(t) = E[etXµ ] =
∑

k
e−µµk

k! etk = eµ(e
t−1).

Additive

By uniqueness of moment generation functions,
Xµ1 +Xµ2 = Xµ1+µ2 if independent.

Chernoff-like bounds

1. If x > µ, then Pr(Xµ ≥ x) ≤ e−µ(eµ)x

xx .

2. If x < µ, then Pr(Xµ ≤ x) ≤ e−µ(eµ)x

xx .
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Review: Joint Distribution of Bin Loads

Basic observation

Loads of multiple bins are not independent.
Hard to handle

Maximum load

Pr(L ≥ 2) ≥ 0.5 if m ≥
√
2n ln 2

Birthday paradox

Pr(L ≥ 3 lnn
ln lnn) ≤

1
n if m = n

Is there a closed form of Pr(X1 = k1, ...Xn = kn)?
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Law of Small Numbers (Poisson Convergence)

Poisson convergence of binomial distribution

Assume that Xn ∼ Bin(n, pn) with limn→∞ npn = λ. For any

fixed k, limn→∞ Pr(Xn = k) = e−λλk

k! .

It is intuitively acceptable (by their figures)

It can be used to approximately calculate Binomial distribution
Bin(n, p), but take care.
n > 100, p < 0.01, np < 20.

Error bounds implies the convergence

e
p(k−np)

1−p − k(k−1)
2(n−k+1) ≤ Pr(Bin(n,p)=k)

Pr(Poi(np)=k) ≤ e
kp− k(k−1)

2n .
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Proof of the error bounds

Error bounds

e
p(k−np)

1−p − k(k−1)
2(n−k+1) ≤ Pr(Bin(n,p)=k)

Pr(Poi(np)=k) ≤ e
kp− k(k−1)

2n .

Proof

An,p,k ,
Pr(Bin(n,p)=k)
Pr(Poi(np)=k) =

∏k−1
j=1

(
1− j

n

)
enp(1− p)n−k for

0 ≤ k ≤ n and it’s 0 otherwise.

Upper bound

An,p,k ≤ e−
∑k−1
j=1

j
n
+np−(n−k)p ≤ ekp−

k(k−1)
2n .

Lower bound

An,p,k ≥ e
−

∑k−1
j=1

j/n
1−j/n+np−(n−k)

p
1−p

= e
−

∑k−1
j=1

j
n−j−

p(np−k)
1−p ≥ e

p(k−np)
1−p − k(k−1)

2(n−k+1) .
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Generalize LSN to weak dependence

Poisson convergence with weak dependence

For each n, Bernoulli experiments Bn
1 , ...B

n
n with indicators Xn

i , if

limn→∞ E[Yn] = λ for Yn =
∑n

i=1X
n
i

For any k, limn→∞
∑

1≤i1<...<ik≤n Pr(
⋂k
r=1B

n
ir
) = λk

k!

Then Yn → Poi(λ), i.e. Pr(Yn = j)→ e−λλj

j! for any j ≥ 0

Basic idea of the proof for j = 0:
Use Taylor series of e−λ and Bonferroni inequalities

Pr(
n⋃
i≥1

Bn
i ) ≤

r∑
l=1

(−1)l−1
∑

i1<i2<...<il

Pr(
l⋂

r=1
Bn
ir
) for odd r

Pr(
n⋃
i≥1

Bn
i ) ≥

r∑
l=1

(−1)l−1
∑

i1<i2<...<il

Pr(
l⋂

r=1
Bn
ir
) for even r
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Remarks on the case of weak dependence

Intuitive explanation

If X is the number of a large collection of nearly independent
events that rarely occur, the X ∼ Poi(E[X])

Application

The number of people who get their own hats back after a
random permutation of the hats

The number of pairs having the same birthday

The number of isolated vertices in random graph G(n, lnn+cn )

It can be further generalized
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Generalize LSN to strong dependence

Poisson convergence with strong dependence, 1975

Stein-Chen Theorem: If Yn =
∑n

i=1Xi, Xi ∼ Ber(pi) and
λ =

∑n
i=1 pi, then for any A ⊆ Z+,

|Pr(Yn ∈ A)− Pr(Poi(λ) ∈ A)| ≤ min

{
1,

1

λ

} n∑
i=1

piE[|Ui − Vi|].

where Ui ∼ Yn, 1 + Vi ∼ Yn|Xi = 1.

Intuitive explanation

Poisson approximation remains valid even if the Bernoulli r.v.s are
strongly dependent and have different expectations.
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Remarks on the law of small numbers

Law of small numbers vs Law of large numbers (CLT)

Poisson approximation vs Normal approximation

Small number vs arbitrary number

Summation on different sets vs summation on a single
sequence

Relation between Poisson and Normal distribution

Should be related since both approximate binomial distribution.
When λ→∞, Poisson converges to Normal.

Specifically, limλ→∞
∑

α<k<β
λke−λ

k! = 1√
2π

∫ b
a e
−x

2

2 dx.

Where a = (α− λ)/
√
λ, b = (β − λ)/

√
λ are fixed.

Intuitive argument

Uniqueness+continuity of moment generating functions.
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Joint Distribution of Bin Loads

Theorem

Pr(X1 = k1, ...Xn = kn) =
m!

k1!k2!···kn!nm

Proof.

By the chain rule, Pr(X1 = k1, ...Xn = kn)
=
∏n−1
i=0 Pr(Xi+1 = ki+1|X1 = k1, ...Xi = ki).

Note that Xi+1|(X1 = k1, ...Xi = ki) is a binomial r.v. of
m− (k1 + · · ·+ ki) trials with success probability 1

n−i .

Remark

You can also prove by counting

Multinomial coefficient m!
k1!k2!···kn! : the number of ways to

allocate m distinct balls into groups of sizes k1, · · · , kn
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Silver bullet for Bins&Balls problems?

In principle

Yes, since it can be computed

In practice

Usually No, since too hard to compute.
Example: what’s the probability of having empty bins?

In need

Approximation for computing or insights for analysis
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Poisson Approximation

At the first glance

The (marginal) load Xi ∼ Bin(m, 1n) for each bin i .
{X1, ...Xn} are not independent.
But seemingly the only dependence is that their sum is m. So,

A applausible conjecture

The joint distribution (X1, ...Xn) ∼ (Y1, ...Yn|
∑
Yi = m), where

Yi ∼ Bin(m, 1n) are mutually independent.

If this is true, good simplification is obtained.

However

It is NOT the case!
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Why is it not true?

General Fact

Given joint distribution J with marginal distribution M1, ...,Mn

independent except M1 + ...+Mn = m, then the marginals of
(M1, ...,Mn|M1 + ...+Mn = m) are not M1, ...,Mn, i.e.
(M1, ...,Mn|M1 + ...+Mn = m) � J

Figure: fX and fY
Figure: The joint distribution fX ∗ fY
conditioned on X + Y = 1 (the sick line)
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But is the conjecture true for any distribution other than binomial?

Yes!

Poisson distribution again. (Better than the conjecture)
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Poisson Approximation Theorem

Notation

X
(m)
i : the load of bin i in (m,n)-model, 1 ≤ i ≤ n.

Y
(µ)
i : independent Poisson r.v.s with expectation µ, 1 ≤ i ≤ n.

Theorem

(X
(m)
1 , X

(m)
2 , ...X

(m)
n ) ∼ (Y

(µ)
1 , Y

(µ)
2 , ...Y

(µ)
n |

∑
Y

(µ)
i = m).

Remarks

The equation is independent of µ: For any m, the same
Poisson distribution works.
Since Pr(X

(m)
1 , X

(m)
2 , ...X

(m)
n ) ∝ Pr(Y

(µ)
1 , Y

(µ)
2 , ...Y

(µ)
n ), the

Xi’s are decoupled.
The two distributions are exactly equal, not approximate.

Proof

By straightforward calculation.
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Example

Coupon Collector Problem

Let X be the number of purchases by n types are collected. Then
for any constant c, limn→∞ Pr(X > n lnn+ cn) = 1− e−e−c .

Remark: Pr(n lnn− 4n ≤ X ≤ n lnn+ 4n) ≥ 0.98

Basic idea of the proof

Use bins-and-balls model and the Poisson approximation.
It holds under the Poisson approximation.
The approximation is actually accurate.
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Proof

Modeling

X > n lnn+ cn means that there are empty bins in the
(n lnn+ cn, n)-Bins&Balls model.

It holds under the Poisson approximation

Approximation experiment: n bins, each having a Poisson number
of balls with the expectation lnn+ c.
Event E : No bin is empty.

Pr(E) =
(
1− e−(lnn+c)

)n
=
(
1− e−c

n

)n
→ e−e

−c
.

The approximation is accurate

Obj.: Asymptotically, Pr(E) = Pr(E ′) = Pr(E|X = n lnn+ cn),
where X is the totally number of balls in the approximation
experiment while E ′ means no bin is empty in the
(n lnn+ cn, n)-Bins&Balls model.
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Proof: Pr(E) = Pr(E|X = n lnn+ cn)

Further reduction

Since Pr(E) = Pr(E|X ∈ Z), there should be a neighborhood
N ⊂ Z s.t. n lnn+ cn ∈ N and Pr(E) ≈ Pr(E|X ∈ N ).
If N is not too small or too big, i.e.

Pr(X ∈ N ) ≈ 1;

Pr(E|X ∈ N ) ≈ Pr(E|X = n lnn+ cn).

We finish the proof by total probability formula.

Does such N exist?

Yes! Try the
√
2m lnm-neighborhood of m = n lnn+ cn.
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Proof: Pr(|X −m| ≤
√
2m lnm)→ 1

X ∼ Poi(m).

By Chernoff bound Pr(X ≥ x) ≤ e−m(em)x

xx = ex−m−x ln
x
m ,

Pr(X > m+
√
2m lnm) ≤ e

√
2m lnm−(m+

√
2m lnm) ln(1+

√
2 lnm
m

)

by ln(1 + z) ≥ z − z2/2 for z ≥ 0

≤ e− lnm+ ln3/2m√
m → 0.

Likewise, Pr(X < m−
√
2m lnm)→ 0.
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Proof: Pr(E||X −m| ≤
√
2m lnm) ≈ Pr(E|X = m)

Pr(E|X = k) increases with k, so

Pr(E|X = m−
√
2m lnm) ≤ Pr(E||X −m| ≤

√
2m lnm)

≤ Pr(E|X = m+
√
2m lnm).

|Pr(E||X −m| ≤
√
2m lnm)− Pr(E|X = m)|

≤ Pr(E|X = m+
√
2m lnm)− Pr(E|X = m−

√
2m lnm).

The last formula means the probability that there is at least one
empty bin after throwing m−

√
2m lnm balls but at least one

among the next 2
√
2m lnm balls goes into this bin, hence

≤ 2
√
2m lnm
n → 0.
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