Homework of Week 5

Deadline: 9:00am, November 15(Thursday), 2018

1. (Bonus score 5 points) Prove the Poisson convergence theorem with weak dependence. Namely, for each n, suppose there are random variables $X_{1}^{n}, \ldots, X_{n}^{n} \in\{0,1\}$ such that

- $\lim _{n \rightarrow \infty} \mathbb{E}\left[Y_{n}\right]=\lambda$ where $Y_{n}=\sum_{i=1}^{n} X_{i}^{n}$, and
- For any $k, \lim _{n \rightarrow \infty} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \operatorname{Pr}\left(X_{i_{1}}^{n}=X_{i_{2}}^{n}=\ldots=X_{i_{r}}^{n}=1\right)=\lambda^{k} / k$!

Then $\lim _{n \rightarrow \infty} Y_{n} \sim \operatorname{Poi}(\lambda)$, i.e. $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(Y_{n}=k\right)=e^{-\lambda} \lambda^{k} / k$! for any integer $k \geq 0$. (Hint: you may need Bonferroni inequalities)
2. The following problem models a simple distributed system wherein agents contend for resources but back off in the face of contention. Balls represent agents, and bins represent resources.

The system evolves over rounds. Every round, balls are thrown independently and uniformly at random into n bins. Any ball that lands in a bin by itself is served and removed from consideration. The remaining balls are thrown again in the next round. We begin with n balls in the first round, and we will finish when every ball is served.

- If there are b balls at the start of a round, what is the expected number of balls at the start of the next round?
- Suppose that every round the number of balls served was exactly the expected number of balls to be served. Show that all the balls would be served in $O(\ln \ln n)$ rounds. (Hint: If x_{j} is the expected number of balls left after j rounds, show and use that $x_{j+1} \leq x_{j}^{2} / n$.)

3. Let X_{1}, \ldots, X_{n} be independent and identically distributed Poisson random variables and $X=\sum_{i=1}^{n} X_{i}$. Let \mathcal{E} be the event that all X_{i} 's are nonzero. Prove that $\operatorname{Pr}(\mathcal{E} \mid X=k)$ increases with k.
4. Let X_{1}, \ldots, X_{n} be independent and identically distributed Poisson random variables and $X=\sum_{i=1}^{n} X_{i}$. Let \mathcal{E} be the event that all X_{i} 's are nonzero. Prove that $\lim _{n \rightarrow \infty} \operatorname{Pr}(\mathcal{E} \mid X=$ $m+\sqrt{2 m \ln m})-\operatorname{Pr}(\mathcal{E} \mid X=m-\sqrt{2 m \ln m})=0$ where $m=n \ln n$.
5. Do Bernoulli experiment for 20 trials, using a new 1-Yuan coin. Record the result in a string $s_{1} s_{2} \ldots s_{i} \ldots s_{20}$, where s_{i} is 1 if the $i^{t h}$ trial gets Head, and otherwise is 0 .
