Probabilistic Method and Random Graphs Lecture 4. Large Deviation Theory & Bins and Balls¹

Xingwu Liu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

¹The slides are mainly based on Chapter 5 of *Probability* and *Computing*. = -9

Questions, comments, or suggestions?

Two questions

- Do moments uniquely determine the distribution?
- Why are Chernoff bounds so tight?

Generating functions

Invented by Abraham de Moivre to compute Fibonacci numbers. Moment generating functions: $M_X(t) = \mathbb{E}[e^{tX}]$. Unique when bounded or convergent around 0: why?

Fundamental laws of probability theory

Law of large numbers (Cardano, Jacob Bernoulli 1713, Poisson 1837): The sample average converges to the expected value. **Central limit theorem** (Abraham de Moivre 1733, Laplace 1812, Lyapunov 1901, Pólya 1920): The arithmetic mean of independent random variables is approximately normally distributed.

$$\lim_{n \to \infty} \Pr\left(\sqrt{n}\left(\left(\frac{1}{n}\sum_{i=1}^n X_i\right) - \mu\right) \le x\right) = \Phi\left(\frac{x}{\sigma}\right)$$

Marvelous but ...

Say nothing about the rate of convergence

Large deviation theory

How fast does it converge? Beyond central limit theorem

A glance at large deviation theory

Motivation

 X_n : the number of heads in n flips of a fair coin. By the central limit theorem, $\Pr(X_n \ge \frac{n}{2} + \sqrt{n}) \to 1 - \Phi(1)$. What about $\Pr(X_n \ge \frac{n}{2} + \frac{n}{3})$? Nothing but converging to 0.

Chernoff bounds say...

$$\Pr(X_n \ge \frac{n}{2} + \frac{n}{3}) \le \left(\frac{e^{\frac{2}{3}}}{\left(\frac{5}{3}\right)^{\frac{5}{3}}}\right)^{\frac{n}{2}} \approx e^{-0.092n}.$$

Actually

Direct calculation shows that $\Pr(X_n \ge \frac{n}{2} + \frac{n}{3}) \approx e^{-0.2426n + o(n)} \ll \text{Chernoff bound.}$

Oh, no!

Find the asymptotic probabilities of rare events - how do they decay to 0 as $n \to \infty?$

Rare events mean large deviation. So large that CLT is almost useless (deviation up to \sqrt{n}).

Intuition

Inspired by Chernoff bounds, conjecture that probabilities of rare events will be exponentially small in $n : e^{-cn}$ for some c. Q: Does $\lim_{n\to\infty} \frac{1}{n} \ln \Pr(\mathcal{E}_n^{rare})$ exist? If so, what's it?

Large Deviation Principle

Simple form (By courtesy of Cramer, 1938)

Let $X_1, ..., X_n, ... \in \mathbb{R}$ be i.i.d. r.v. which satisfy $\mathbb{E}[e^{tX_1}] < \infty$ for $t \in \mathbb{R}$. Then for any $t > \mathbb{E}[X_1]$, we have

$$\lim_{n \to \infty} \frac{1}{n} \ln \Pr(\sum_{i=1}^n X_i \ge tn) = -I(t),$$

where

$$I(t) \triangleq \sup_{\lambda > 0} \lambda t - \ln \mathbb{E}[e^{\lambda X_1}].$$

Remark

 $I(\cdot)$: rate function. Many variants: the factor $\frac{1}{n}$, tn in the events, random variables

Large Deviation Principle

$$\lim_{n \to \infty} \frac{1}{n} \ln \Pr(\sum_{i=1}^n X_i \ge tn) = -(\sup_{\lambda > 0} \lambda t - \ln \mathbb{E}[e^{\lambda X_1}])$$

Proof: Upper bound

Let
$$Y_n = \frac{\sum_{i=1}^n X_i}{n}$$
, $M(\lambda) = \mathbb{E}[e^{\lambda X_1}]$, and $\psi(\lambda) = \ln M(\lambda)$.

$$\Pr(Y_n \ge t) \le e^{-\lambda n t} (M(\lambda))^n$$
 for any $\lambda \ge 0$.

$$\frac{1}{n}\ln\Pr(Y_n \ge t) \le -\lambda t + \psi(\lambda).$$

$$\frac{1}{n}\ln\Pr(Y_n \ge t) \le -\sup_{\lambda \ge 0} (\lambda t - \psi(\lambda)).$$

Large Deviation Principle: Proof

Lower bound

The maximizer
$$\lambda_0$$
 of $\lambda t - \psi(\lambda)$ satisfies $t = \int \frac{x e^{\lambda_0 x}}{M(\lambda_0)} d\mu(x)$.

Let
$$d\mu_0(x) = \frac{e^{\lambda_0 x}}{M(\lambda_0)} d\mu(x)$$
. Its expectation $\int x d\mu_0(x) = t$.

Let
$$A = \{Y_n \ge t\} \subseteq \mathbb{R}^n, A_{\delta} = \{Y_n \in [t, t+\delta]\} \subseteq \mathbb{R}^n.$$

$$\Pr_{\mu}(A) \ge \Pr_{\mu}(A_{\delta}) = \int_{A_{\delta}} \Pi_{i=1}^{n} d\mu(x_{i})$$
$$= \int_{A_{\delta}} (M(\lambda_{0}))^{n} e^{-\lambda_{0} \sum_{i=1}^{n} x_{i}} \prod_{i=1}^{n} d\mu_{0}(x_{i})$$
$$\ge (M(\lambda_{0}) e^{-\lambda_{0}(t+\delta)})^{n} \Pr_{\mu_{0}}(A_{\delta}).$$

Applying CLT to μ_0 , we have $\lim_{n\to\infty} \Pr_{\mu_0}(A_{\delta}) = \frac{1}{2}$.

 $\lim_{n\to\infty} \frac{1}{n} \ln \Pr(Y_n \ge t) \ge \psi(\lambda_0) - (t+\delta)\lambda_0, \text{ and let } \delta \to 0.$

9 / 20

Large deviation theory vs CLT

Seemingly easy to get exponential decay in many cases, but hard to calculate.

Chernoff bounds concern large deviation

- Con: Generally weaker
- Pro: Always holds, not just asymptotically

Key assumption

Independence!

Bins-and-Balls: Coping with Dependence

Main idea

Approximation with independence.

Focus

Approximation.

General setting: (m, n)-model

Extension

Multiple choice, limited capacity of bins ...

Applications

Load balancing: balls = jobs, bins = servers; Data storage: balls = files, bins = disks; Hashing: balls = data keys, bins = hash table slots; Coupon Collector: balls = coupons; bins = coupon types. Number of balls in any bin: $Bin(m, \frac{1}{n})$.

Numbers of balls in multiple bins: not independent. Why?

Application: time complexity of bucket-sort

Bucket-sort: Given $n = 2^m$ integers from $[0, 2^k)$ with k > m, first allocate the integers to n bins, followed by sorting each bin. **Expected time complexity**: $n + \mathbb{E}[\sum_{i=1}^n X_i^2] = n + n\mathbb{E}[X_1^2]$. $X_1 \sim Bin(n, \frac{1}{n})$, so $\mathbb{E}[X_1^2] = 2 - \frac{1}{n}$.

Topics of Bins-and-Balls Model

The distribution of

. . .

Number of balls in a certain bin Maximum load Number of bins containing r balls

Max. load: when does it exceed 1 w.h.p.?

The probability that max. load is 1 is

$$(1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{m-1}{n}) \le \prod_{i=1}^{m-1} e^{-\frac{i}{n}} \approx e^{-\frac{m^2}{2n}}$$

It is less than $\frac{1}{2}$ if $m \geq \sqrt{2n \ln 2}$

Birthday paradox

 $n = 365, m \ge 22.49$

Max load: (n, n)-model

Asymptotically,
$$\Pr(L \ge 3 \frac{\ln n}{\ln \ln n}) \le \frac{1}{n}$$

Proof

$$X_{i}: \text{ the number of balls in bin } i.$$

$$\Pr(X_{1} \ge k) \le {\binom{n}{k}} \frac{1}{n^{k}} \le \frac{1}{k!}.$$

$$\frac{k^{k}}{k!} < \sum_{i} \frac{k^{i}}{i!} = e^{k} \Rightarrow \frac{1}{k!} \le {\binom{e}{k}}^{k}.$$

$$\Pr\left(L \ge 3\frac{\ln n}{\ln \ln n}\right) \le n \left(\frac{e \ln \ln n}{3 \ln n}\right)^{3\frac{\ln n}{\ln \ln n}}$$

$$\le n \left(\frac{\ln \ln n}{\ln n}\right)^{3\frac{\ln n}{\ln \ln n}}$$

$$\le e^{\ln n + (\ln \ln \ln n - \ln \ln n)\frac{3 \ln n}{\ln \ln n}} \le \frac{1}{n}.$$

・ロ ・ ・ 一 ・ ・ 注 ト ・ 注 ・ う へ で
15 / 20

Number of bins having load r: (m, n) - model

r = 0

The distribution of
$$X'_i s$$
 are identical: $Bin(m, \frac{1}{n})$.
 $Pr(X_i = 0) = (1 - \frac{1}{n})^m \approx e^{-\frac{m}{n}}$.
Expected number of empty bins is about $ne^{-\frac{m}{n}}$.

Load = r

$$\Pr(X_i = r) = {\binom{m}{r}} \frac{1}{n^r} \left(1 - \frac{1}{n}\right)^{m-r}.$$

When $r \ll \min\{m, n\}$, $\Pr(X_i = r) \approx e^{-\frac{m}{n}} \frac{\left(\frac{m}{n}\right)^r}{r!}.$
Expected number of load- r bins is about $ne^{-\frac{m}{n}} \frac{\left(\frac{m}{n}\right)^r}{r!}.$

Poisson distribution

$$\sum_{j} e^{-\mu} \frac{\mu^{j}}{j!} = 1 \text{ due to } e^{x} = \sum_{j} \frac{x^{j}}{j!}.$$

Nonnegative-integer-valued r.v. X_{μ} : $\Pr(X_{\mu} = j) = e^{-\mu} \frac{\mu^{j}}{j!}.$

Basic Properties of Poisson distribution

Low-order moments

 $\mathbb{E}[X_{\mu}] = Var[X_{\mu}] = \mu.$

Moment generation function

$$M_{X_{\mu}}(t) = \mathbb{E}[e^{tX_{\mu}}] = \sum_{k} \frac{e^{-\mu}\mu^{k}}{k!} e^{tk} = e^{\mu(e^{t}-1)}.$$

Additive

By uniqueness of moment generation functions, $X_{\mu_1} + X_{\mu_2} = X_{\mu_1 + \mu_2}$ if independent.

Chernoff-like bounds

1. If
$$x > \mu$$
, then $\Pr(X_{\mu} \ge x) \le \frac{e^{-\mu}(e\mu)^x}{x^x}$.
2. If $x < \mu$, then $\Pr(X_{\mu} \le x) \le \frac{e^{-\mu}(e\mu)^x}{x^x}$.

Occurrences of rare events during a fixed interval

- Typos per page in printed books.
- Number of bomb hits per $0.25 km^2$ in South London during World War II.
- The number of goals in sports involving two competing teams.
- The number of soldiers killed by horse-kicks each year in Prussian cavalry corps in the (late) 19th century.

Story of Poisson distribution

1837, Poisson, *Research on the Probability of Judgments in Criminal and Civil Matters.* Appeared in 1711, de Moivre. (Stigler's law of eponymy, 1980) First practical application (next page)

First practical application of Poisson distribution

Reliability engineering

- Ladislaus Bortkiewicz (1868-1931)
 - Russian economist and statistician of Polish ancestry, mostly lived in Germany
 - Famous for Poisson distribution and Marxian economics
- The book The Law of Small Numbers, 1898
- Annual Horse-kick data of 14 cavalry corps over 20 years
- Events with low probability in a large population follow a Poisson distribution

No. deaths k	Freq.	Poisson approx. $200 \times \mathbb{P}(\text{Poi}(0.61) = k)$
0	109	108.67
1	65	66.29
2	22	20.22
3	3	4.11
4	1	0.63
5	0	0.08
6	0	0.01

・ロト ・回ト ・ヨト ・ヨト

http: //willperkins.org/6221/slides/largedeviations.pdf