Probabilistic Method and Random Graphs
 Lecture 4. Large Deviation Theory \& Bins and Balls ${ }^{1}$

Xingwu Liu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

${ }^{1}$ The slides are mainly based on Chapter 5 of Probability and Computing.

Preface

Questions, comments, or suggestions?

A brief review of Lecture 3

Two questions

- Do moments uniquely determine the distribution?
- Why are Chernoff bounds so tight?

Generating functions

Invented by Abraham de Moivre to compute Fibonacci numbers.
Moment generating functions: $M_{X}(t)=\mathbb{E}\left[e^{t X}\right]$.
Unique when bounded or convergent around 0 : why?

Chernoff bound in a big picture

Fundamental laws of probability theory

Law of large numbers (Cardano, Jacob Bernoulli 1713, Poisson 1837): The sample average converges to the expected value.

Central limit theorem (Abraham de Moivre 1733, Laplace 1812, Lyapunov 1901, Pólya 1920): The arithmetic mean of independent random variables is approximately normally distributed.

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\sqrt{n}\left(\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)-\mu\right) \leq x\right)=\Phi\left(\frac{x}{\sigma}\right)
$$

Marvelous but ...
Say nothing about the rate of convergence
Large deviation theory
How fast does it converge? Beyond central limit theorem

A glance at large deviation theory

Motivation

X_{n} : the number of heads in n flips of a fair coin.
By the central limit theorem, $\operatorname{Pr}\left(X_{n} \geq \frac{n}{2}+\sqrt{n}\right) \rightarrow 1-\Phi(1)$.
What about $\operatorname{Pr}\left(X_{n} \geq \frac{n}{2}+\frac{n}{3}\right)$? Nothing but converging to 0 .

Chernoff bounds say...

$$
\operatorname{Pr}\left(X_{n} \geq \frac{n}{2}+\frac{n}{3}\right) \leq\left(\frac{e^{\frac{2}{3}}}{\left(\frac{5}{3}\right)^{\frac{5}{3}}}\right)^{\frac{n}{2}} \approx e^{-0.092 n}
$$

Actually

Direct calculation shows that
$\operatorname{Pr}\left(X_{n} \geq \frac{n}{2}+\frac{n}{3}\right) \approx e^{-0.2426 n+o(n)} \ll$ Chernoff bound.

Oh, no!

Mission of Large Deviation Theory

Find the asymptotic probabilities of rare events - how do they decay to 0 as $n \rightarrow \infty$?

Rare events mean large deviation.
So large that CLT is almost useless (deviation up to \sqrt{n}).

Intuition

Inspired by Chernoff bounds, conjecture that probabilities of rare events will be exponentially small in $n: e^{-c n}$ for some c. Q: Does $\lim _{n \rightarrow \infty} \frac{1}{n} \ln \operatorname{Pr}\left(\mathcal{E}_{n}^{\text {rare }}\right)$ exist? If so, what's it?

Large Deviation Principle

Simple form (By courtesy of Cramer, 1938)

Let $X_{1}, \ldots X_{n}, \ldots \in \mathbb{R}$ be i.i.d. r.v. which satisfy $\mathbb{E}\left[e^{t X_{1}}\right]<\infty$ for $t \in \mathbb{R}$. Then for any $t>\mathbb{E}\left[X_{1}\right]$, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \ln \operatorname{Pr}\left(\sum_{i=1}^{n} X_{i} \geq t n\right)=-I(t)
$$

where

$$
I(t) \triangleq \sup _{\lambda>0} \lambda t-\ln \mathbb{E}\left[e^{\lambda X_{1}}\right] .
$$

Remark

$I(\cdot)$: rate function.
Many variants: the factor $\frac{1}{n}, t n$ in the events, random variables

Large Deviation Principle: Proof

Large Deviation Principle

$\lim _{n \rightarrow \infty} \frac{1}{n} \ln \operatorname{Pr}\left(\sum_{i=1}^{n} X_{i} \geq t n\right)=-\left(\sup _{\lambda>0} \lambda t-\ln \mathbb{E}\left[e^{\lambda X_{1}}\right]\right)$.

Proof: Upper bound

Let $Y_{n}=\frac{\sum_{i=1}^{n} X_{i}}{n}, M(\lambda)=\mathbb{E}\left[e^{\lambda X_{1}}\right]$, and $\psi(\lambda)=\ln M(\lambda)$.

$$
\operatorname{Pr}\left(Y_{n} \geq t\right) \leq e^{-\lambda n t}(M(\lambda))^{n} \text { for any } \lambda \geq 0 .
$$

$$
\frac{1}{n} \ln \operatorname{Pr}\left(Y_{n} \geq t\right) \leq-\lambda t+\psi(\lambda)
$$

$$
\frac{1}{n} \ln \operatorname{Pr}\left(Y_{n} \geq t\right) \leq-\sup _{\lambda \geq 0}(\lambda t-\psi(\lambda)) .
$$

Large Deviation Principle: Proof

Lower bound

The maximizer λ_{0} of $\lambda t-\psi(\lambda)$ satisfies $t=\int \frac{x e^{\lambda_{0} x}}{M\left(\lambda_{0}\right)} d \mu(x)$.

Let $d \mu_{0}(x)=\frac{e^{\lambda_{0} x}}{M\left(\lambda_{0}\right)} d \mu(x)$. Its expectation $\int x d \mu_{0}(x)=t$.

Let $A=\left\{Y_{n} \geq t\right\} \subseteq \mathbb{R}^{n}, A_{\delta}=\left\{Y_{n} \in[t, t+\delta]\right\} \subseteq \mathbb{R}^{n}$.

$$
\begin{aligned}
\operatorname{Pr}_{\mu}(A) \geq \operatorname{Pr}_{\mu}\left(A_{\delta}\right) & =\int_{A_{\delta}} \Pi_{i=1}^{n} d \mu\left(x_{i}\right) \\
& =\int_{A_{\delta}}\left(M\left(\lambda_{0}\right)\right)^{n} e^{-\lambda_{0} \sum_{i=1}^{n} x_{i}} \Pi_{i=1}^{n} d \mu_{0}\left(x_{i}\right) \\
& \geq\left(M\left(\lambda_{0}\right) e^{-\lambda_{0}(t+\delta)}\right)^{n} \operatorname{Pr}_{\mu_{0}}\left(A_{\delta}\right)
\end{aligned}
$$

Applying CLT to μ_{0}, we have $\lim _{n \rightarrow \infty} \operatorname{Pr}_{\mu_{0}}\left(A_{\delta}\right)=\frac{1}{2}$.
$\lim _{n \rightarrow \infty} \frac{1}{n} \ln \operatorname{Pr}\left(Y_{n} \geq t\right) \geq \psi\left(\lambda_{0}\right)-(t+\delta) \lambda_{0}$, and let $\delta \rightarrow 0$.

Remarks

Large deviation theory vs CLT

Seemingly easy to get exponential decay in many cases, but hard to calculate.

Chernoff bounds concern large deviation

- Con: Generally weaker
- Pro: Always holds, not just asymptotically

Key assumption
Independence!

Bins-and-Balls: Coping with Dependence

Main idea

Approximation with independence.

Focus

Approximation.

General setting: (m, n)-model

Extension

Multiple choice, limited capacity of bins ...

Applications

Load balancing: balls $=$ jobs, bins $=$ servers;
Data storage: balls = files, bins = disks;
Hashing: balls = data keys, bins = hash table slots;
Coupon Collector: balls = coupons; bins = coupon types.

Basic Properties

Number of balls in any bin: $\operatorname{Bin}\left(m, \frac{1}{n}\right)$.

Numbers of balls in multiple bins: not independent. Why?

Application: time complexity of bucket-sort

Bucket-sort: Given $n=2^{m}$ integers from $\left[0,2^{k}\right)$ with $k>m$, first allocate the integers to n bins, followed by sorting each bin. Expected time complexity: $n+\mathbb{E}\left[\sum_{i=1}^{n} X_{i}^{2}\right]=n+n \mathbb{E}\left[X_{1}^{2}\right]$. $X_{1} \sim \operatorname{Bin}\left(n, \frac{1}{n}\right)$, so $\mathbb{E}\left[X_{1}^{2}\right]=2-\frac{1}{n}$.

Topics of Bins-and-Balls Model

The distribution of

Number of balls in a certain bin
Maximum load
Number of bins containing r balls

Max. load: when does it exceed 1 w.h.p.?
The probability that max. load is 1 is

$$
\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{m-1}{n}\right) \leq \prod_{i=1}^{m-1} e^{-\frac{i}{n}} \approx e^{-\frac{m^{2}}{2 n}}
$$

It is less than $\frac{1}{2}$ if $m \geq \sqrt{2 n \ln 2}$
Birthday paradox
$n=365, m \geq 22.49$

Max load: (n, n)-model

Asymptotically, $\operatorname{Pr}\left(L \geq 3 \frac{\ln n}{\ln \ln n}\right) \leq \frac{1}{n}$

Proof

X_{i} : the number of balls in bin i.

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{1} \geq k\right) \leq\binom{ n}{k} \frac{1}{n^{k}} \leq \frac{1}{k!} . \\
& \frac{k^{k}}{k!}<\sum_{i} \frac{k^{i}}{i!}=e^{k} \Rightarrow \frac{1}{k!} \leq\left(\frac{e}{k}\right)^{k} .
\end{aligned}
$$

$$
\operatorname{Pr}\left(L \geq 3 \frac{\ln n}{\ln \ln n}\right) \leq n\left(\frac{e \ln \ln n}{3 \ln n}\right)^{3 \frac{\ln n}{\ln \ln n}}
$$

$$
\leq n\left(\frac{\ln \ln n}{\ln n}\right)^{3 \frac{\ln n}{\ln \ln n}}
$$

$$
\leq e^{\ln n+(\ln \ln \ln n-\ln \ln n) \frac{3 \ln n}{\ln \ln n}} \leq \frac{1}{n}
$$

Number of bins having load $r:(m, n)$ - model

$r=0$
The distribution of $X_{i}^{\prime} s$ are identical: $\operatorname{Bin}\left(m, \frac{1}{n}\right)$.
$\operatorname{Pr}\left(X_{i}=0\right)=\left(1-\frac{1}{n}\right)^{m} \approx e^{-\frac{m}{n}}$.
Expected number of empty bins is about $n e^{-\frac{m}{n}}$.

Load=r

$\operatorname{Pr}\left(X_{i}=r\right)=\binom{m}{r} \frac{1}{n^{r}}\left(1-\frac{1}{n}\right)^{m-r}$.
When $r \ll \min \{m, n\}, \operatorname{Pr}\left(X_{i}=r\right) \approx e^{-\frac{m}{n} \frac{\left(\frac{m}{n}\right)^{r}}{r!} \text {. }}$
Expected number of load- r bins is about $n e^{-\frac{m}{n}} \frac{\left(\frac{m}{n}\right)^{r}}{r!}$.

Poisson distribution
$\sum_{j} e^{-\mu} \frac{\mu^{j}}{j!}=1$ due to $e^{x}=\sum_{j} \frac{x^{j}}{j!}$.
Nonnegative-integer-valued r.v. $X_{\mu}: \operatorname{Pr}\left(X_{\mu}=j\right)=e^{-\mu} \frac{\mu^{j}}{j!}$.

Basic Properties of Poisson distribution

Low-order moments

$\mathbb{E}\left[X_{\mu}\right]=\operatorname{Var}\left[X_{\mu}\right]=\mu$.
Moment generation function
$M_{X_{\mu}}(t)=\mathbb{E}\left[e^{t X_{\mu}}\right]=\sum_{k} \frac{e^{-\mu} \mu^{k}}{k!} e^{t k}=e^{\mu\left(e^{t}-1\right)}$.

Additive

By uniqueness of moment generation functions, $X_{\mu_{1}}+X_{\mu_{2}}=X_{\mu_{1}+\mu_{2}}$ if independent.

Chernoff-like bounds

1. If $x>\mu$, then $\operatorname{Pr}\left(X_{\mu} \geq x\right) \leq \frac{e^{-\mu}(e \mu)^{x}}{x^{x}}$.
2. If $x<\mu$, then $\operatorname{Pr}\left(X_{\mu} \leq x\right) \leq \frac{e^{-\mu}(e \mu)^{x}}{x^{x}}$.

Applications and Story

Occurrences of rare events during a fixed interval

- Typos per page in printed books.
- Number of bomb hits per $0.25 \mathrm{~km}^{2}$ in South London during World War II.
- The number of goals in sports involving two competing teams.
- The number of soldiers killed by horse-kicks each year in Prussian cavalry corps in the (late) 19th century.

Story of Poisson distribution

1837, Poisson, Research on the Probability of Judgments in Criminal and Civil Matters.
Appeared in 1711, de Moivre. (Stigler's law of eponymy, 1980)
First practical application (next page)

First practical application of Poisson distribution

Reliability engineering

- Ladislaus Bortkiewicz (1868-1931)
- Russian economist and statistician of Polish ancestry, mostly lived in Germany
- Famous for Poisson distribution and Marxian economics
- The book The Law of Small Numbers, 1898
- Annual Horse-kick data of 14 cavalry corps over 20 years
- Events with low probability in a large population follow a Poisson distribution

No. deaths k	Freq.	Poisson approx. $200 \times \mathbb{P}(\operatorname{Poi}(0.61)=k)$
0	109	108.67
1	65	66.29
2	22	20.22
3	3	4.11
4	1	0.63
5	0	0.08
6	0	0.01

References

(1) http:
//willperkins.org/6221/slides/largedeviations.pdf

