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1The slides are mainly based on Chapter 5 of Probability and Computing.
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Preface

Questions, comments, or suggestions?
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A brief review of Lecture 3

Two questions

Do moments uniquely determine the distribution?

Why are Chernoff bounds so tight?

Generating functions

Invented by Abraham de Moivre to compute Fibonacci numbers.
Moment generating functions: MX(t) = E[etX ].
Unique when bounded or convergent around 0: why?
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Chernoff bound in a big picture

Fundamental laws of probability theory

Law of large numbers (Cardano, Jacob Bernoulli 1713, Poisson
1837): The sample average converges to the expected value.
Central limit theorem (Abraham de Moivre 1733, Laplace 1812,
Lyapunov 1901, Pólya 1920): The arithmetic mean of independent
random variables is approximately normally distributed.
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Marvelous but ...

Say nothing about the rate of convergence

Large deviation theory

How fast does it converge? Beyond central limit theorem
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A glance at large deviation theory

Motivation

Xn: the number of heads in n flips of a fair coin.
By the central limit theorem, Pr(Xn ≥ n

2 +
√
n)→ 1− Φ(1).

What about Pr(Xn ≥ n
2 + n

3 )? Nothing but converging to 0.

Chernoff bounds say...

Pr(Xn ≥ n
2 + n

3 ) ≤
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3

( 5
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5
3

)n
2

≈ e−0.092n.

Actually

Direct calculation shows that
Pr(Xn ≥ n

2 + n
3 ) ≈ e−0.2426n+o(n) � Chernoff bound.

Oh, no!
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Mission of Large Deviation Theory

Find the asymptotic probabilities of rare events - how do they
decay to 0 as n→∞?

Rare events mean large deviation.
So large that CLT is almost useless (deviation up to

√
n).

Intuition

Inspired by Chernoff bounds, conjecture that probabilities of rare
events will be exponentially small in n : e−cn for some c.
Q: Does limn→∞

1
n ln Pr(Eraren ) exist? If so, what’s it?
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Large Deviation Principle

Simple form (By courtesy of Cramer, 1938)

Let X1, ...Xn, ... ∈ R be i.i.d. r.v. which satisfy E[etX1 ] <∞ for
t ∈ R. Then for any t > E[X1], we have

lim
n→∞

1

n
ln Pr(

n∑
i=1

Xi ≥ tn) = −I(t),

where
I(t) , sup

λ>0
λt− lnE[eλX1 ].

Remark

I(·): rate function.
Many variants: the factor 1

n , tn in the events, random variables
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Large Deviation Principle: Proof

Large Deviation Principle

limn→∞
1
n ln Pr(

∑n
i=1Xi ≥ tn) = −(supλ>0 λt− lnE[eλX1 ]).

Proof: Upper bound

Let Yn =
∑n
i=1Xi
n , M(λ) = E[eλX1 ], and ψ(λ) = lnM(λ).

Pr(Yn ≥ t) ≤ e−λnt(M(λ))n for any λ ≥ 0.

1
n ln Pr(Yn ≥ t) ≤ −λt+ ψ(λ).

1
n ln Pr(Yn ≥ t) ≤ − supλ≥0(λt− ψ(λ)).
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Large Deviation Principle: Proof

Lower bound

The maximizer λ0 of λt− ψ(λ) satisfies t =
∫

xeλ0x

M(λ0)
dµ(x).

Let dµ0(x) = eλ0x

M(λ0)
dµ(x). Its expectation

∫
xdµ0(x) = t.

Let A = {Yn ≥ t} ⊆ Rn, Aδ = {Yn ∈ [t, t+ δ]} ⊆ Rn.

Prµ(A) ≥ Prµ(Aδ) =

∫
Aδ

Πn
i=1dµ(xi)

=

∫
Aδ

(M(λ0))
ne−λ0

∑n
i=1 xiΠn

i=1dµ0(xi)

≥ (M(λ0)e
−λ0(t+δ))n Prµ0(Aδ).

Applying CLT to µ0, we have limn→∞ Prµ0(Aδ) = 1
2 .

limn→∞
1
n ln Pr(Yn ≥ t) ≥ ψ(λ0)− (t+ δ)λ0, and let δ → 0.
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Remarks

Large deviation theory vs CLT

Seemingly easy to get exponential decay in many cases, but hard
to calculate.

Chernoff bounds concern large deviation

Con: Generally weaker

Pro: Always holds, not just asymptotically

Key assumption

Independence!
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Bins-and-Balls: Coping with Dependence

Main idea

Approximation with independence.

Focus

Approximation.
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The Bins-and-Balls Model

General setting: (m,n)-model

Extension

Multiple choice, limited capacity of bins ...

Applications

Load balancing: balls = jobs, bins = servers;
Data storage: balls = files, bins = disks;
Hashing: balls = data keys, bins = hash table slots;
Coupon Collector: balls = coupons; bins = coupon types.
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Basic Properties

Number of balls in any bin: Bin(m, 1n).

Numbers of balls in multiple bins: not independent. Why?

Application: time complexity of bucket-sort

Bucket-sort: Given n = 2m integers from [0, 2k) with k > m, first
allocate the integers to n bins, followed by sorting each bin.
Expected time complexity: n+ E[

∑n
i=1X

2
i ] = n+ nE[X2

1 ].
X1 ∼ Bin(n, 1n), so E[X2

1 ] = 2− 1
n .

13 / 20



Topics of Bins-and-Balls Model

The distribution of

Number of balls in a certain bin
Maximum load
Number of bins containing r balls
...

Max. load: when does it exceed 1 w.h.p.?

The probability that max. load is 1 is

(1− 1

n
)(1− 2

n
) · · · (1− m− 1

n
) ≤

m−1∏
i=1

e−
i
n ≈ e−

m2

2n .

It is less than 1
2 if m ≥

√
2n ln 2

Birthday paradox

n = 365,m ≥ 22.49
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Max load: (n, n)-model

Asymptotically, Pr(L ≥ 3 lnn
ln lnn) ≤ 1

n

Proof

Xi: the number of balls in bin i.
Pr(X1 ≥ k) ≤ (nk) 1

nk
≤ 1

k! .
kk

k! <
∑

i
ki

i! = ek ⇒ 1
k! ≤

(
e
k

)k
.
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(
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lnn
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)
≤ n

(
e ln lnn

3 lnn

)3 lnn
ln lnn

≤ n
(

ln lnn

lnn

)3 lnn
ln lnn

≤ elnn+(ln ln lnn−ln lnn) 3 lnn
ln lnn ≤ 1

n
.
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Number of bins having load r: (m,n)−model

r = 0

The distribution of X ′is are identical: Bin(m, 1n).

Pr(Xi = 0) =
(
1− 1

n

)m ≈ e−mn .

Expected number of empty bins is about ne−
m
n .

Load=r

Pr(Xi = r) =
(
m
r

)
1
nr

(
1− 1

n

)m−r
.

When r � min{m,n}, Pr(Xi = r) ≈ e−
m
n

(mn )
r

r! .

Expected number of load-r bins is about ne−
m
n

(mn )
r

r! .

Poisson distribution∑
j e
−µ µj

j! = 1 due to ex =
∑

j
xj

j! .

Nonnegative-integer-valued r.v. Xµ: Pr(Xµ = j) = e−µ µ
j

j! .
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Basic Properties of Poisson distribution

Low-order moments

E[Xµ] = V ar[Xµ] = µ.

Moment generation function

MXµ(t) = E[etXµ ] =
∑

k
e−µµk

k! etk = eµ(e
t−1).

Additive

By uniqueness of moment generation functions,
Xµ1 +Xµ2 = Xµ1+µ2 if independent.

Chernoff-like bounds

1. If x > µ, then Pr(Xµ ≥ x) ≤ e−µ(eµ)x

xx .

2. If x < µ, then Pr(Xµ ≤ x) ≤ e−µ(eµ)x

xx .
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Applications and Story

Occurrences of rare events during a fixed interval

Typos per page in printed books.

Number of bomb hits per 0.25km2 in South London during
World War II.

The number of goals in sports involving two competing teams.

The number of soldiers killed by horse-kicks each year in
Prussian cavalry corps in the (late) 19th century.

Story of Poisson distribution

1837, Poisson, Research on the Probability of Judgments in
Criminal and Civil Matters.
Appeared in 1711, de Moivre. (Stigler’s law of eponymy, 1980)
First practical application (next page)
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First practical application of Poisson distribution

Reliability engineering

Ladislaus Bortkiewicz (1868-1931)

Russian economist and statistician of Polish ancestry, mostly
lived in Germany
Famous for Poisson distribution and Marxian economics

The book The Law of Small Numbers, 1898

Annual Horse-kick data of 14 cavalry corps over 20 years

Events with low probability in a large population follow a
Poisson distribution
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