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Questions, comments, or suggestions? )
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Expectation, k-moment, variance

Inequalities

Universal: Union bound
1-moment: Markov's inequality
2-moment: Chebychev’'s inequality

Chernoff bounds: independent sum
Let X =)"" , X;, where X/s are independent Poisson trials. Let
u=E[X]. Then

52

1. For 6 >0, Pr(X > (1 +6)p) < ((Hé)%)u < e Pk,

— 2
2. For 1> 8> 0, Pr(X < (1= 0)) < (qiymsy) <7
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General bounds for independent sums

Each X; € [0,1] but is not necessarily a Poisson trial

Basic Chernoff bounds remain valid (by e*® < ze' + (1 — 2)e).

Basic Chernoff bounds remain valid, except that the exponent  is
divided by s.

The domains (a;, b;) of X/s differ

. 2t2
Hoeffding's Inequality: Pr(|X — E[X]| > t) < 2e Ziti-a)?
Proposed in 1963.

y

Remarks of Hoeffding's Inequality

1. It considers the absolute, rather than relative, deviation.
Particularly useful if = 0.

2. When each X; € [0, s], it is tighter than the simplified basic
Chernoff bounds if ¢ is big, and looser otherwise.
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Hoeffding's Inequality

Let X =" | X;, where X; € [aj, b;] are independent r.v. Then

2t2

Pr(|X —E[X]| > t) <2e Ziti—2)® for any t > 0

| \

dea of the proof

. : A2 (b—a)?
1. Given rv. Z € [a,b] with E[Z] =0, E[e}] <e 5 .

2. Pr(X — E[X] > t) < LB o it

Proof of Fact 1

1. ekzéz a Ab+b z )\a forzE[ab]

2. E[e? ]_(1—9+06) whereezﬁandu:)\(b—a).
3. Define () £ —0z + In(1 — 0 + 0e®). Then E[e??] < e?(),
4. Use calculus to show that ¢(u) < %
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Example: Hoeffding's Inequality + Union bound

Set balancing

Given a matrix A € {0, 1}"*™, find b € {—1,1}" s.t. || Ab || is
minimized.

| A

Motivation
feature 1: ail aiz -+ Qim
feature 2: a1 Qa9 -+  Qom . .
, each column is an object.
feature n: Apl Gp2 **°  Gpm

Want to partition the objects so that every feature is balanced.

Algorithm

Uniformly randomly sample b.
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Performance analysis

Performance

Pr(|| Ab [loo> VAmInn) < 2

Proof
Forany 1 <i<mn, Z; =}, a;;b; is the ith entry of Ab. By union
bound, it suffices to prove Pr(|Z;| > V4dmlnn) < % for each 1.

Fix i. W.l.o.g, assume a;; = 1 iff 1 < j < k for some k < m. Then
Zi =b1+ ...+ bg.

The b;'s are independent over {—1,1} with E[b;] = 0.

By Hoeffding’s Inequality, Pr(|Z;| > vV4mInn) <2~ & < 2 J




Reflection on moments and Chernoff bounds
Do moments uniquely determine the distribution?

Chernoff Bounds

Why is it so good?
Can it be improved by non-exponential functions?
Anything to do with moments?

The story begins with generating functions. |
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Generating functions

Informal definition

A power series whose coefficients encode information about a
sequence of numbers.

Example: Probability generating function

Given a discrete random variable X whose values are non-negative
integers, Gx (t) £ ,5,t" Pr(X = n) = E[tX].
Example: a Bernoulli random variable.

Properties

Convergence: It converges if |t < 1.
Uniqueness: Gx(-) = Gy (-) implies the same distribution.

Application

Toy: Use uniqueness to show that the summation of independent
identical binomial distribution is binomial.
Deriving Moments: Gg?)(l) =EX(X-1)--- (X —-k+1)].
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Moment generating functions

Shortcoming of probability generating functions

Only valid for non-nagetive integer random variables.

Moment generating functions

Mx(t) £, e Pr(X = z) = E[e!X].
Example of Bernoulli distribution.

o If Mx(t) converges around 0, M)((k)(O) = E[X*], meaning the
moments are exactly the coefficients of the Taylor's expansion.

e Convergence: Mx(t) converges when X is bounded.

o If independent, Mx.y = Mx My .

e Uniqueness: If Mx(t) converges around 0, the distribution is
uniquely determined by the moments. (Why? See later)

A
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But

Moments generating function may not converge

Cauchy distribution: density function f(x) =
have moments for any order.

1
m does not

An example of non-uniqueness of moments

Log-Normal-like distribution:
—l(ln :L‘)2
e 2

density function fx, () = W(l + asin(2nmInx)).

k-Moments E[X*] = ¢¥°/2 for non-negative integers k.
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Characteristic functions

ox(t) £ [p €™ dFx(z) where i = /=1 and ¢ is real.

v

Convergence: It always exists.
Uniqueness: It uniquely determines the distribution.
The idea of the proof.

Uniqueness of convergent moments generating functions

If the MGF converges around 0, the characteristic functions can be
extended to a zone with small imaginary part and are equal along
the imaginary axis.

By the unique continuation theorem of analytic complex functions,
the characteristic functions are equal.
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Ready to get insights

Do moments uniquely determine the distribution?
Yes, but conditionally.

v

Chernoff Bounds

@ Why is it so good?

@ Can it be improved by non-exponential functions?

@ Anything to do with moments?

What's your answer?

~
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A story of generating function

Introduced in 1730 by Abraham de Moivre, to solve the general
linear recurrence problem

Wisdom: A generating function is a clothesline on which we hang
up a sequence of numbers for display. -Herbert Wilf

Application to Fibonacci numbers (by courtesy of de Moivre):
F(.’E) = ZZOZO FnIEn =X + Z;OZQ(anl + Fn,Q),In =

z + zF(z) + 22 F(x)
= F(e) = =50 = = (3% — =%5) = Tido & (¢" — 9" 2
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Brief introduction to Abraham de Moivre

o May 26, 1667- @ de Moivre's formula
Nov. 27, 1754 @ Binet's formula

@ A French @ Central limit theorem
mathematician @ Stirling’s formula

v

@ Friends: Isaac Newton, Edmond Halley, and James Stirling

@ Struggled for a living and lived for mathematics
@ The Doctrine of Chances was prized by gamblers
e 2nd probability textbook in history

@ Predicted the exact date of his death
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