Probabilistic Method and Random Graphs Lecture 2. Moments and Inequalities ¹

Xingwu Liu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

¹The slides are partially based on Chapters 3 and 4 of Probability and Computing.

Questions, comments, or suggestions?

Monty Hall Problem?

Review

- Probability axioms
- Onion Bound
- Independence
- Onditional probability and chain rule
 - $\operatorname{Pr}(\bigcap_{i=1}^{n} A_i) = \prod_{i=1}^{n} \operatorname{Pr}(A_i | \bigcap_{j=1}^{i-1} A_j)$
- Random variables: expectation, linearity, Bernoulli/binomial/geometric distribution
- $\begin{tabular}{ll} \hline \begin{tabular}{ll} \bullet \\ \hline \begin{tabular}{ll} \bullet \\ \bullet \\ \hline \begin{tabular}{ll} \bullet \\ \hline \begin{tabular}$

Expectation is too weak

Average has nothing to do with the probability of exceeding it, Guy!

Example

- Random variables Y_{α} with $\alpha \geq 1$
- Let $\Pr(Y_{\alpha} = \alpha) = \frac{1}{\alpha}$ and $\Pr(Y_{\alpha} = 0) = 1 \frac{1}{\alpha}$
- $\Pr(Y_{\alpha} \ge 1) = \frac{1}{\alpha}$ can be arbitrarily close to 1

But, mh... Possible to exceed so much with high probability? Markov's inequality

If
$$X \ge 0$$
 and $a > 0$, $\Pr(X \ge a) \le \frac{\mathbb{E}[X]}{a}$.

Proof:

$$\mathbb{E}[X] = \sum_{i \ge 0} i * \Pr(X = i) \ge \sum_{i \ge a} i * \Pr(X = i)$$
$$\ge \sum_{i \ge a} a * \Pr(X = i) = a * \Pr(i \ge a).$$

Observations

- Intuitive meaning (level of your income)
- With 12 coupons, $\mathbb{E}[X]\approx 30, \Pr(X\geq 200)<1/6$
- Loose? Tight when only expectation is known!

Conditional expectation

Definition

$$\mathbb{E}[Y|Z = z] = \sum_{y} y * \Pr(Y = y|Z = z)$$

Theorem

$$\mathbb{E}[Y] = \mathbb{E}_Z[\mathbb{E}_Y[Y|Z]] \triangleq \sum_z \Pr(Z=z)\mathbb{E}[Y|Z=z]$$

Proof.

$$\begin{split} \sum_{z} \Pr(Z = z) \mathbb{E}[Y|Z = z] &= \sum_{z} \Pr(Z = z) \sum_{y} y \frac{\Pr(Y = y, Z = z)}{\Pr(Z = z)} \\ &= \sum_{y} y \sum_{z} \Pr(Y = y, Z = z) \\ &= \sum_{y} y \Pr(Y = y) = \mathbb{E}[Y] \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Via conditional expectation

- *X_n*: the runtime of sorting an *n*-sequence.
- K: the rank of the pivot.
- If K = k, the pivot divides the sequence into a (k 1)-sequence and an (n k)-sequence.
- Given K = k, $X_n = X_{k-1} + X_{n-k} + n 1$.
- $\mathbb{E}[X_n|K=k] = \mathbb{E}[X_{k-1}] + \mathbb{E}[X_{n-k}] + n 1.$
- $\mathbb{E}[X_n] = \sum_{k=1}^n \Pr(K=k) (\mathbb{E}[X_{k-1}] + \mathbb{E}[X_{n-k}] + n 1)$ = $\sum_{k=1}^n \frac{\mathbb{E}[X_{k-1}] + \mathbb{E}[X_{n-k}]}{n} + n - 1.$
- Please verify that $\mathbb{E}[X_n] = 2n \ln n + O(n)$.

Via linearity + indicators

- y_i : the *i*-th biggest element
- Y_{ij} : indicator for the event that y_i, y_j are compared
- $Y_{ij} = 1$ iff the first pivot in $\{y_i, y_{i+1}, ... y_j\}$ is y_i or y_j
- $\mathbb{E}[Y_{ij}] = \Pr(Y_{ij} = 1) = \frac{2}{j-i+1}$

•
$$X_n = \sum_{i=1}^n \sum_{j=1}^n Y_{ij}$$

•
$$\mathbb{E}[X_n] = \sum_{i=1}^n \sum_{j=1}^n \mathbb{E}[Y_{ij}]$$

• It is easy to see that $\mathbb{E}[X_n] = (2n+2)\sum_{i=1}^n \frac{1}{i} + O(n)$

Why moments?

- Global features of a random variable.
- Expectation is too weak: can't distinguish Y_{lpha}

Definition

- kth moment: $\mathbb{E}[X^k]$.
- Variance: $Var[X] = \mathbb{E}[(X \mathbb{E}[X])^2]$ Show how far the values are away from the average.

• Examples:
$$Var[Y_{\alpha}] = \alpha - 1$$

- Covariance: $Cov(X, Y) \triangleq \mathbb{E}[(X \mathbb{E}[X])(Y \mathbb{E}[Y])].$
- It's zero in case of independence.

$$Var[X + Y] = Var[X] + Var[Y] + 2Cov(X, Y)$$

Var[X + Y] = Var[X] + Var[Y] if X and Y are independent.

・ロン ・四 と ・ ヨ と ・ ヨ と

3

9/26

$$Var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

 $Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$

Binomial random variable with parameters n and p

•
$$X = \sum_{k=1}^{n} X_i$$
 with the X_i 's independent.

•
$$Var[X_i] = p - p^2 = p(1 - p).$$

•
$$Var[X] = \sum_{k=1}^{n} Var[X_i] = np(1-p)$$

Geometric random variable with parameter p

Straightforward computing shows that $Var[X] = \frac{1-p}{p^2}$

Coupon collector's problem

• We know that
$$Var[X_i] = \frac{1-p_i}{p_i^2}$$
.

•
$$Var[X] = \sum_{k=1}^{n} Var[X_i] \le \sum_{k=1}^{n} \frac{n^2}{(n-i+1)^2} \le \frac{\pi^2 n^2}{6}$$

Chebyshev's inequality

•
$$\Pr(|X - \mathbb{E}[X]| \ge a) \le \frac{Var[X]}{a^2}$$

• An immediate corollary from Markov's inequality.

Coupon collector's problem

$$\Pr(X \ge 200) = \Pr(|X - \mathbb{E}[X]| \ge 170) \le \frac{255}{170^2} < 0.01$$

Chebyshev's inequality

•
$$\Pr(|X - \mathbb{E}[X]| \ge a) \le \frac{Var[X]}{a^2}$$

An immediate corollary from Markov's inequality.

Coupon collector's problem

$$\Pr(X \ge 200) = \Pr(|X - \mathbb{E}[X]| \ge 170) \le \frac{255}{170^2} < 0.01$$

Trump card

- By union bound, $\Pr(|X nH_n| \ge 5nH_n) \le \frac{1}{n^5}$.
- Hint: Consider the probability of not containing the *i*th coupon after $(c+1)n \ln n$ steps.

Union bound beats the others. What a surprise!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Brief introduction to Chebyshev

- May 16, 1821 December 8, 1894
- A founding father of Russian mathematics

- Probability, statistics, mechanics, geometry, number theory
- Chebyshev inequality, Bertrand-Chebyshev theorem, Chebyshev polynomials, Chebyshev bias
- Aleksandr Lyapunov, Markov brothers

Chernoff bounds: inequalities of independent sum

Motivation

- 1-moment \Rightarrow Markov's inequality
- 1- and 2-moments \Rightarrow Chebyshev's inequality
- Q: more information \Rightarrow stronger inequalities?

Examples

Flip a fair coin for n trials. Let X be the number of Heads, which is around the expectation $\frac{n}{2}$. How about its concentration?

- Union bound makes no sense
- Markov's inequality: $\Pr(X \frac{n}{2} > \sqrt{n \ln n}) < \frac{n}{n + 2\sqrt{n \ln n}} \rightsquigarrow 1$
- Chebyshev's inequality: $\Pr(X \frac{n}{2} > \sqrt{n \ln n}) < \frac{1}{\ln n}$
- Can we do better due to independent sum? YES!

Chernoff bounds

Let $X = \sum_{i=1}^{n} X_i$, where $X'_i s$ are **independent** Poisson trials. Let $\mu = \mathbb{E}[X]$. Then 1. For any $\delta > 0$, $\Pr(X \ge (1+\delta)\mu) \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}$. 2. For any $1 > \delta > 0$, $\Pr(X \le (1-\delta)\mu) \le \left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}$.

Remarks

Note that $0 < \frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} < 1$ when $\delta > 0$. The bound in 1 exponentially deceases w.r.t. μ ! And so is the bound in 2.

Proof of the upper tail bound

For any
$$\lambda > 0$$
,
 $\Pr(X \ge (1+\delta)\mu) = \Pr\left(e^{\lambda X} \ge e^{\lambda(1+\delta)\mu}\right) \le \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda(1+\delta)\mu}}.$

$$\mathbb{E}\left[e^{\lambda X}\right] = \mathbb{E}\left[e^{\lambda \sum_{i=1}^{n} X_{i}}\right] = \mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda X_{i}}\right] = \prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda X_{i}}\right].$$

Let
$$p_i = \Pr(X_i = 1)$$
 for each i . Then,

$$\mathbb{E}\left[e^{\lambda X_i}\right] = p_i e^{\lambda \cdot 1} + (1 - p_i)e^{\lambda \cdot 0} = 1 + p_i(e^{\lambda} - 1) \le e^{p_i(e^{\lambda} - 1)}.$$

So,
$$\mathbb{E}\left[e^{\lambda X}\right] \leq \prod_{i=1}^{n} e^{p_i(e^{\lambda}-1)} = e^{\sum_{i=1}^{n} p_i(e^{\lambda}-1)} = e^{(e^{\lambda}-1)\mu}.$$

Thus,
$$\Pr(X \ge (1+\delta)\mu) \le \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda(1+\delta)\mu}} \le \frac{e^{(e^{\lambda}-1)\mu}}{e^{\lambda(1+\delta)\mu}} = \left(\frac{e^{(e^{\lambda}-1)}}{e^{\lambda(1+\delta)}}\right)^{\mu}$$
.
Let $\lambda = \ln(1+\delta) > 0$, and the proof ends.

15 / 26

Lower tail bound

Can be proved likewise.

A tentative application

Recall the coin flipping example. By the Chernoff bound,

$$\Pr(X - \frac{n}{2} > \sqrt{n \ln n}) < \frac{e^{\sqrt{n \ln n}}}{\left(1 + 2\sqrt{\frac{\ln n}{n}}\right)^{\left(\frac{n}{2} + \sqrt{n \ln n}\right)}}$$

Even hard to figure out the order.

Is there a bound that is more *friendly*?

Simplified Chernoff bounds

Let $X = \sum_{i=1}^{n} X_i$, where X'_i 's are independent Poisson trials. Let $\mu = \mathbb{E}[X]$, 1. $\Pr(X \ge (1+\delta)\mu) \le e^{-\frac{\delta^2}{2+\delta}\mu}$ for any $\delta > 0$; 2. $\Pr(X \le (1-\delta)\mu) \le e^{-\frac{\delta^2}{2}\mu}$ for any $1 > \delta > 0$.

Application to coin flipping

 $\Pr(X - \frac{n}{2} > \sqrt{n \ln n}) \le n^{-\frac{2}{3}}$. This is exponentially tighter than Chebychev's inequality $(\frac{1}{\ln n})$.

Proof and Remarks

Idea of the proof

1.
$$\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} \leq e^{-\frac{\delta^2}{2+\delta}} \Leftrightarrow \delta - (1+\delta)\ln(1+\delta) < -\frac{\delta^2}{2+\delta} \Leftrightarrow \ln(1+\delta) > \frac{2\delta}{2+\delta} \text{ for } \delta > 0.$$

2. Use calculus to show that $\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}} \leq e^{-\frac{\delta^2}{2}}$.

Remark 1

When
$$1 > \delta > 0$$
, we have $-\frac{\delta^2}{2+\delta} < -\frac{\delta^2}{3}$, so $\Pr(X \ge (1+\delta)\mu) \le e^{-\frac{\delta^2}{3}\mu}$, and $\Pr(|X-\mu| \ge \delta\mu) \le 2e^{-\frac{\delta^2}{3}\mu}$.

Remark 2

The bound is simpler but looser. Generally, it is outperformed by the basic Chernoff bound. See example.

Minimum-congestion path planning

- G = (V, E) is an undirected graph. $D = \{(s_i, t_i)\}_{i=1}^m \subseteq V^2$.
- Find a path P_i connecting (s_i, t_i) for every i.
- Objective: minimize the congestion max_{e∈E} cong(e), the number of the paths among {P_i}^m_{i=1} that contain e.

This problem is NP-hard, but we will give an approximation algorithm based on randomized rounding.

- Model as an integer program
- Relax it into a linear program
- Round the solution
- Analyze the approximation ratio

Notation

 \mathbb{P}_i : the set of candidate paths connecting s_i and t_i ; f_P^i : the indicator of whether we pick path $P \in \mathbb{P}_i$ or not; C: the congestion in the graph.

Round a solution to the LP

For every *i*, randomly pick **one** path $P_i \in \mathbb{P}_i$ with probability f_P^i . Use the set $\{P_i\}_{i=1}^n$ as an approximate solution to the ILP.

Notation

 $\begin{array}{l} C: \text{ optimum congestion of the ILP.} \\ C^*: \text{ optimum congestion of the LP. } C^* \leq C. \\ X^e_i: \text{ indicator of whether } e \in P_i. \\ X^e \triangleq \sum_i X^e_i: \text{ congestion of the edge } e. \\ X \triangleq \max_e X^e: \text{ the network congestion.} \end{array}$

Objective

We hope to show that $\Pr(X > (1 + \delta)C)$ is small for a small δ . By union bound, we only need to show $\Pr(X^e > (1 + \delta)C) < \frac{1}{n^3}$ for every e.

Apply Chernoff bound to $X^e = \sum_i X_i^e$

Prove
$$\Pr(X^e > (1+\delta)C) < \frac{1}{n^3}$$

Easy facts

$$\begin{split} \mathbb{E}[X_i^e] &= \sum_{e \in P \in \mathbb{P}_i} f_P^i.\\ \mu &= \mathbb{E}[X^e] = \sum_i \mathbb{E}[X_i^e] = \sum_i \sum_{e \in P \in \mathbb{P}_i} f_P^i \le C^* \le C. \end{split}$$

If $C = \omega(\ln n)$, δ can be arbitrarily small

Proof: For any
$$0 < \delta < 1$$
, $\Pr(X^e > (1+\delta)C) \le e^{-\frac{\delta^2 C}{2+\delta}} \le \frac{1}{n^3}$.

If $C = O(\ln n)$, $\delta = \Theta(\ln n)$

$$\begin{array}{l} \text{Proof:} \ \Pr(X^e > (1+\delta)C) \leq e^{-\frac{\delta^2 C}{2+\delta}} \leq e^{-\frac{\delta}{2}} \ \text{for} \ \delta \geq 2. \\ \text{So,} \ \Pr(X^e > (1+\delta)C) \leq \frac{1}{n^3} \ \text{when} \ \delta = 6 \ln n. \end{array}$$

If $C = O(\ln n)$, δ can be improved to be $\delta = \Theta\left(\frac{\ln n}{\ln \ln n}\right)$

Proof: By the basic Chernoff bounds,

$$\Pr(X^e > (1+\delta)C) \le \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^C \le \frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}.$$

When $\delta = \Theta\left(\frac{\ln n}{\ln \ln n}\right)$, $(1+\delta)\ln(1+\delta) = \Theta(\ln n)$ and $\delta - (1+\delta)\ln(1+\delta) = \Theta(\ln n)$.

Remarks of the application

Remark 1

It illustrates the practical difference of various Chernoff bounds.

Remark 2

Is it a mistake to use the inaccurate expectation? No! It's a powerful trick. If $\mu_L \le \mu \le \mu_H$, the following bounds hold:

- Upper tail: $\Pr(X \ge (1+\delta)\mu_H) \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu_H}$.
- Lower tail: $\Pr(X \le (1-\delta)\mu_L) \le \left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu_L}$.

Chernoff bounds + Union bound: a paradigm

A high-level picture: Want to upper-bound $\Pr(\text{something bad})$.

- 1. By Union bound, $Pr(something bad) \leq \sum_{i=1}^{Large} Pr(Bad_i);$
- 2. By Chernoff bounds, $Pr(Bad_i) \leq minuscule$ for each *i*;
- 3. $Pr(something bad) \leq Large \times minuscule = small.$

∽ へ (~ 24 / 26 Why the Chernoff bound is better? Note that it's rooted at Markov's Inequality.

Can it be improved by using functions other than exponential?

 http://tcs.nju.edu.cn/wiki/index.php/
 http://www.cs.princeton.edu/courses/archive/fall09/ cos521/Handouts/probabilityandcomputing.pdf
 http://www.cs.cmu.edu/afs/cs/academic/ class/15859-f04/www/