Probabilistic Method and Random Graphs

Lecture 2. Moments and Inequalities ${ }^{1}$

Xingwu Liu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

${ }^{1}$ The slides are partially based on Chapters 3 and 4 of Probability and Computing.

Preface

Questions, comments, or suggestions?

Monty Hall Problem?

Review

(1) Probability axioms
(2) Union Bound
(3) Independence
(4) Conditional probability and chain rule

$$
\text { - } \operatorname{Pr}\left(\bigcap_{i=1}^{n} A_{i}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(A_{i} \mid \bigcap_{j=1}^{i-1} A_{j}\right)
$$

(5) Random variables: expectation, linearity, Bernoulli/binomial/geometric distribution
(0. Coupon collector's problem: $\mathbb{E}[X]=n H(n) \approx n \ln n$

Coupon collector's problem: fight the salesman

Expectation is too weak

Average has nothing to do with the probability of exceeding it, Guy!

Example

- Random variables Y_{α} with $\alpha \geq 1$
- Let $\operatorname{Pr}\left(Y_{\alpha}=\alpha\right)=\frac{1}{\alpha}$ and $\operatorname{Pr}\left(Y_{\alpha}=0\right)=1-\frac{1}{\alpha}$
- $\operatorname{Pr}\left(Y_{\alpha} \geq 1\right)=\frac{1}{\alpha}$ can be arbitrarily close to 1

But, mh...
Possible to exceed so much with high probability?

An inequality for tail probability

Markov's inequality

If $X \geq 0$ and $a>0, \operatorname{Pr}(X \geq a) \leq \frac{\mathbb{E}[X]}{a}$.

Proof:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i \geq 0} i * \operatorname{Pr}(X=i) \geq \sum_{i \geq a} i * \operatorname{Pr}(X=i) \\
& \geq \sum_{i \geq a} a * \operatorname{Pr}(X=i)=a * \operatorname{Pr}(i \geq a)
\end{aligned}
$$

Observations

- Intuitive meaning (level of your income)
- With 12 coupons, $\mathbb{E}[X] \approx 30, \operatorname{Pr}(X \geq 200)<1 / 6$
- Loose? Tight when only expectation is known!

Conditional expectation

Definition

$$
\mathbb{E}[Y \mid Z=z]=\sum_{y} y * \operatorname{Pr}(Y=y \mid Z=z)
$$

Theorem

$$
\mathbb{E}[Y]=\mathbb{E}_{Z}\left[\mathbb{E}_{Y}[Y \mid Z]\right] \triangleq \sum_{z} \operatorname{Pr}(Z=z) \mathbb{E}[Y \mid Z=z]
$$

Proof.

$$
\begin{aligned}
\sum_{z} \operatorname{Pr}(Z=z) \mathbb{E}[Y \mid Z=z] & =\sum_{z} \operatorname{Pr}(Z=z) \sum_{y} y \frac{\operatorname{Pr}(Y=y, Z=z)}{\operatorname{Pr}(Z=z)} \\
& =\sum_{y} y \sum_{z} \operatorname{Pr}(Y=y, Z=z) \\
& =\sum_{y} y \operatorname{Pr}(Y=y)=\mathbb{E}[Y]
\end{aligned}
$$

Application: expected run-time of Quicksort

Via conditional expectation

- X_{n} : the runtime of sorting an n-sequence.
- K : the rank of the pivot.
- If $K=k$, the pivot divides the sequence into a
($k-1$)-sequence and an $(n-k)$-sequence.
- Given $K=k, X_{n}=X_{k-1}+X_{n-k}+n-1$.
- $\mathbb{E}\left[X_{n} \mid K=k\right]=\mathbb{E}\left[X_{k-1}\right]+\mathbb{E}\left[X_{n-k}\right]+n-1$.
- $\mathbb{E}\left[X_{n}\right]=\sum_{k=1}^{n} \operatorname{Pr}(K=k)\left(\mathbb{E}\left[X_{k-1}\right]+\mathbb{E}\left[X_{n-k}\right]+n-1\right)$

$$
=\sum_{k=1}^{n} \frac{\mathbb{E}\left[X_{k-1}\right]+\mathbb{E}\left[X_{n-k}\right]}{n}+n-1 .
$$

- Please verify that $\mathbb{E}\left[X_{n}\right]=2 n \ln n+O(n)$.

Application: expected run-time of Quicksort

Via linearity + indicators

- y_{i} : the i-th biggest element
- $Y_{i j}$: indicator for the event that y_{i}, y_{j} are compared
- $Y_{i j}=1$ iff the first pivot in $\left\{y_{i}, y_{i+1}, \ldots y_{j}\right\}$ is y_{i} or y_{j}
- $\mathbb{E}\left[Y_{i j}\right]=\operatorname{Pr}\left(Y_{i j}=1\right)=\frac{2}{j-i+1}$
- $X_{n}=\sum_{i=1}^{n} \sum_{j=1}^{n} Y_{i j}$
- $\mathbb{E}\left[X_{n}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}\left[Y_{i j}\right]$
- It is easy to see that $\mathbb{E}\left[X_{n}\right]=(2 n+2) \sum_{i=1}^{n} \frac{1}{i}+O(n)$

Moments of random variables

Why moments?

- Global features of a random variable.
- Expectation is too weak: can't distinguish Y_{α}

Definition

- k th moment: $\mathbb{E}\left[X^{k}\right]$.
- Variance: $\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$

Show how far the values are away from the average.

- Examples: $\operatorname{Var}\left[Y_{\alpha}\right]=\alpha-1$
- Covariance: $\operatorname{Cov}(X, Y) \triangleq \mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]$.
- It's zero in case of independence.

Properties of the variance

$$
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}(X, Y)
$$

$$
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y] \text { if } X \text { and } Y \text { are independent. }
$$

$$
\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}
$$

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

Variances of some random variables

Binomial random variable with parameters n and p

- $X=\sum_{k=1}^{n} X_{i}$ with the X_{i} 's independent.
- $\operatorname{Var}\left[X_{i}\right]=p-p^{2}=p(1-p)$.
- $\operatorname{Var}[X]=\sum_{k=1}^{n} \operatorname{Var}\left[X_{i}\right]=n p(1-p)$

Geometric random variable with parameter p
Straightforward computing shows that $\operatorname{Var}[X]=\frac{1-p}{p^{2}}$

Coupon collector's problem

- We know that $\operatorname{Var}\left[X_{i}\right]=\frac{1-p_{i}}{p_{i}^{2}}$.
- $\operatorname{Var}[X]=\sum_{k=1}^{n} \operatorname{Var}\left[X_{i}\right] \leq \sum_{k=1}^{n} \frac{n^{2}}{(n-i+1)^{2}} \leq \frac{\pi^{2} n^{2}}{6}$

A new argument against the salesman

Chebyshev's inequality

- $\operatorname{Pr}(|X-\mathbb{E}[X]| \geq a) \leq \frac{\operatorname{Var}[X]}{a^{2}}$.
- An immediate corollary from Markov's inequality.

$$
\begin{aligned}
& \text { Coupon collector's problem } \\
& \operatorname{Pr}(X \geq 200)=\operatorname{Pr}(|X-\mathbb{E}[X]| \geq 170) \leq \frac{255}{170^{2}}<0.01
\end{aligned}
$$

A new argument against the salesman

Chebyshev's inequality

- $\operatorname{Pr}(|X-\mathbb{E}[X]| \geq a) \leq \frac{\operatorname{Var}[X]}{a^{2}}$.
- An immediate corollary from Markov's inequality.

Coupon collector's problem

$$
\operatorname{Pr}(X \geq 200)=\operatorname{Pr}(|X-\mathbb{E}[X]| \geq 170) \leq \frac{255}{170^{2}}<0.01
$$

Trump card

- By union bound, $\operatorname{Pr}\left(\left|X-n H_{n}\right| \geq 5 n H_{n}\right) \leq \frac{1}{n^{5}}$.
- Hint: Consider the probability of not containing the i th coupon after $(c+1) n \ln n$ steps.

Union bound beats the others. What a surprise!

Brief introduction to Chebyshev

- May 16, 1821 December 8, 1894
- A founding father of Russian mathematics
- Probability, statistics, mechanics, geometry, number theory
- Chebyshev inequality, Bertrand-Chebyshev theorem, Chebyshev polynomials, Chebyshev bias
- Aleksandr Lyapunov, Markov brothers

Chernoff bounds: inequalities of independent sum

Motivation

- 1-moment \Rightarrow Markov's inequality
- 1- and 2-moments \Rightarrow Chebyshev's inequality
- Q: more information \Rightarrow stronger inequalities?

Examples

Flip a fair coin for n trials. Let X be the number of Heads, which is around the expectation $\frac{n}{2}$. How about its concentration?

- Union bound makes no sense
- Markov's inequality: $\operatorname{Pr}\left(X-\frac{n}{2}>\sqrt{n \ln n}\right)<\frac{n}{n+2 \sqrt{n \ln n}} \rightsquigarrow 1$
- Chebyshev's inequality: $\operatorname{Pr}\left(X-\frac{n}{2}>\sqrt{n \ln n}\right)<\frac{1}{\ln n}$
- Can we do better due to independent sum? YES!

Chernoff bounds: basic form

Chernoff bounds

Let $X=\sum_{i=1}^{n} X_{i}$, where $X_{i}^{\prime} s$ are independent Poisson trials. Let $\mu=\mathbb{E}[X]$. Then

1. For any $\delta>0, \operatorname{Pr}(X \geq(1+\delta) \mu) \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}$.
2. For any $1>\delta>0, \operatorname{Pr}(X \leq(1-\delta) \mu) \leq\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}$.

Remarks

Note that $0<\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}<1$ when $\delta>0$. The bound in 1 exponentially deceases w.r.t. μ ! And so is the bound in 2 .

Proof of the upper tail bound

For any $\lambda>0$,
$\operatorname{Pr}(X \geq(1+\delta) \mu)=\operatorname{Pr}\left(e^{\lambda X} \geq e^{\lambda(1+\delta) \mu}\right) \leq \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda(1+\delta) \mu}}$.
$\mathbb{E}\left[e^{\lambda X}\right]=\mathbb{E}\left[e^{\lambda \sum_{i=1}^{n} X_{i}}\right]=\mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda X_{i}}\right]=\prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda X_{i}}\right]$.

Let $p_{i}=\operatorname{Pr}\left(X_{i}=1\right)$ for each i. Then, $\mathbb{E}\left[e^{\lambda X_{i}}\right]=p_{i} e^{\lambda \cdot 1}+\left(1-p_{i}\right) e^{\lambda \cdot 0}=1+p_{i}\left(e^{\lambda}-1\right) \leq e^{p_{i}\left(e^{\lambda}-1\right)}$.

So, $\mathbb{E}\left[e^{\lambda X}\right] \leq \prod_{i=1}^{n} e^{p_{i}\left(e^{\lambda}-1\right)}=e^{\sum_{i=1}^{n} p_{i}\left(e^{\lambda}-1\right)}=e^{\left(e^{\lambda}-1\right) \mu}$.

Thus, $\operatorname{Pr}(X \geq(1+\delta) \mu) \leq \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda(1+\delta) \mu}} \leq \frac{e^{\left(e^{\lambda}-1\right) \mu}}{e^{\lambda(1+\delta) \mu}}=\left(\frac{e^{\left(e^{\lambda}-1\right)}}{e^{\lambda(1+\delta)}}\right)^{\mu}$. Let $\lambda=\ln (1+\delta)>0$, and the proof ends.

Lower tail bound and application

Lower tail bound

Can be proved likewise.

A tentative application

Recall the coin flipping example. By the Chernoff bound,

$$
\operatorname{Pr}\left(X-\frac{n}{2}>\sqrt{n \ln n}\right)<\frac{e^{\sqrt{n \ln n}}}{\left(1+2 \sqrt{\frac{\ln n}{n}}\right)^{\left(\frac{n}{2}+\sqrt{n \ln n}\right.}}
$$

Even hard to figure out the order.

Is there a bound that is more friendly?

Chernoff bounds: a simplified form

Simplified Chernoff bounds

Let $X=\sum_{i=1}^{n} X_{i}$, where $X_{i}^{\prime} s$ are independent Poisson trials. Let $\mu=\mathbb{E}[X]$,

1. $\operatorname{Pr}(X \geq(1+\delta) \mu) \leq e^{-\frac{\delta^{2}}{2+\delta} \mu}$ for any $\delta>0$;
2. $\operatorname{Pr}(X \leq(1-\delta) \mu) \leq e^{-\frac{\delta^{2}}{2} \mu}$ for any $1>\delta>0$.

Application to coin flipping

$\operatorname{Pr}\left(X-\frac{n}{2}>\sqrt{n \ln n}\right) \leq n^{-\frac{2}{3}}$. This is exponentially tighter than Chebychev's inequality $\left(\frac{1}{\ln n}\right)$.

Proof and Remarks

Idea of the proof

1. $\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} \leq e^{-\frac{\delta^{2}}{2+\delta}} \Leftrightarrow \delta-(1+\delta) \ln (1+\delta)<-\frac{\delta^{2}}{2+\delta} \Leftarrow$ $\ln (1+\delta)>\frac{2 \delta}{2+\delta}$ for $\delta>0$.
2. Use calculus to show that $\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}} \leq e^{-\frac{\delta^{2}}{2}}$.

Remark 1

When $1>\delta>0$, we have $-\frac{\delta^{2}}{2+\delta}<-\frac{\delta^{2}}{3}$, so
$\operatorname{Pr}(X \geq(1+\delta) \mu) \leq e^{-\frac{\delta^{2}}{3} \mu}$, and $\operatorname{Pr}(|X-\mu| \geq \delta \mu) \leq 2 e^{-\frac{\delta^{2}}{3} \mu}$.

Remark 2

The bound is simpler but looser. Generally, it is outperformed by the basic Chernoff bound. See example.

Example: random rounding

Minimum-congestion path planning

- $G=(V, E)$ is an undirected graph. $D=\left\{\left(s_{i}, t_{i}\right)\right\}_{i=1}^{m} \subseteq V^{2}$.
- Find a path P_{i} connecting $\left(s_{i}, t_{i}\right)$ for every i.
- Objective: minimize the congestion $\max _{e \in E} \operatorname{cong}(e)$, the number of the paths among $\left\{P_{i}\right\}_{i=1}^{m}$ that contain e.

This problem is NP-hard, but we will give an approximation algorithm based on randomized rounding.

- Model as an integer program
- Relax it into a linear program
- Round the solution
- Analyze the approximation ratio

ILP and its relaxation

Notation

\mathbb{P}_{i} : the set of candidate paths connecting s_{i} and t_{i};
f_{P}^{i} : the indicator of whether we pick path $P \in \mathbb{P}_{i}$ or not;
C : the congestion in the graph.

Round a solution to the LP

For every i, randomly pick one path $P_{i} \in \mathbb{P}_{i}$ with probability f_{P}^{i}. Use the set $\left\{P_{i}\right\}_{i=1}^{n}$ as an approximate solution to the ILP.

Approximation ratio

Notation

C : optimum congestion of the ILP.
C^{*} : optimum congestion of the LP. $C^{*} \leq C$.
X_{i}^{e} : indicator of whether $e \in P_{i}$.
$X^{e} \triangleq \sum_{i} X_{i}^{e}$: congestion of the edge e.
$X \triangleq \max _{e} X^{e}$: the network congestion.

Objective

We hope to show that $\operatorname{Pr}(X>(1+\delta) C)$ is small for a small δ. By union bound, we only need to show $\operatorname{Pr}\left(X^{e}>(1+\delta) C\right)<\frac{1}{n^{3}}$ for every e.

Apply Chernoff bound to $X^{e}=\sum_{i} X_{i}^{e}$

Prove $\operatorname{Pr}\left(X^{e}>(1+\delta) C\right)<\frac{1}{n^{3}}$

Easy facts

$$
\begin{aligned}
& \mathbb{E}\left[X_{i}^{e}\right]=\sum_{e \in P \in \mathbb{P}_{i}} f_{P}^{i} \\
& \mu=\mathbb{E}\left[X^{e}\right]=\sum_{i} \mathbb{E}\left[X_{i}^{e}\right]=\sum_{i} \sum_{e \in P \in \mathbb{P}_{i}} f_{P}^{i} \leq C^{*} \leq C
\end{aligned}
$$

If $C=\omega(\ln n), \delta$ can be arbitrarily small
Proof: For any $0<\delta<1, \operatorname{Pr}\left(X^{e}>(1+\delta) C\right) \leq e^{-\frac{\delta^{2} C}{2+\delta}} \leq \frac{1}{n^{3}}$.

If $C=O(\ln n), \delta=\Theta(\ln n)$

Proof: $\operatorname{Pr}\left(X^{e}>(1+\delta) C\right) \leq e^{-\frac{\delta^{2} C}{2+\delta}} \leq e^{-\frac{\delta}{2}}$ for $\delta \geq 2$.
So, $\operatorname{Pr}\left(X^{e}>(1+\delta) C\right) \leq \frac{1}{n^{3}}$ when $\delta=6 \ln n$.

Prove $\operatorname{Pr}\left(X^{e}>(1+\delta) C\right)<\frac{1}{n^{3}}$

If $C=O(\ln n), \delta$ can be improved to be $\delta=\Theta\left(\frac{\ln n}{\ln \ln n}\right)$
Proof: By the basic Chernoff bounds,

$$
\operatorname{Pr}\left(X^{e}>(1+\delta) C\right) \leq\left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{C} \leq \frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}
$$

When $\delta=\Theta\left(\frac{\ln n}{\ln \ln n}\right),(1+\delta) \ln (1+\delta)=\Theta(\ln n)$ and $\delta-(1+\delta) \ln (1+\delta)=\Theta(\ln n)$.

Remarks of the application

Remark 1

It illustrates the practical difference of various Chernoff bounds.

Remark 2

Is it a mistake to use the inaccurate expectation?
No! It's a powerful trick.
If $\mu_{L} \leq \mu \leq \mu_{H}$, the following bounds hold:

- Upper tail: $\operatorname{Pr}\left(X \geq(1+\delta) \mu_{H}\right) \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu_{H}}$.
- Lower tail: $\operatorname{Pr}\left(X \leq(1-\delta) \mu_{L}\right) \leq\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu_{L}}$.

Chernoff bounds + Union bound: a paradigm
A high-level picture: Want to upper-bound Pr (something bad).

1. By Union bound, $\operatorname{Pr}($ something bad $) \leq \sum_{i=1}^{\text {Large }} \operatorname{Pr}\left(\operatorname{Bad}_{i}\right)$;
2. By Chernoff bounds, $\operatorname{Pr}\left(\operatorname{Bad}_{i}\right) \leq$ minuscule for each i;
3. $\operatorname{Pr}($ something bad $) \leq$ Large \times minuscule $=$ small.

Questions

Why the Chernoff bound is better? Note that it's rooted at Markov's Inequality.

Can it be improved by using functions other than exponential?

References

1. http://tcs.nju.edu.cn/wiki/index.php/
2. http://www.cs.princeton.edu/courses/archive/fall09/ $\cos 521 / H a n d o u t s / p r o b a b i l i t y a n d c o m p u t i n g . p d f$
3. http://www.cs.cmu.edu/afs/cs/academic/ class/15859-f04/www/
