Probabilistic Method and Random Graphs

 Lecture 13. Excursions, Stationary Distributions, and Applications of Markov Chains ${ }^{1}$Xingwu Liu
Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

$$
\text { January 11, } 2019
$$

${ }^{1}$ The slides are mainly based on Introductory Lecture Notes on Markov Chains And Random Walks by Takis Konstantopoulos and Lecture Notes of Stochastic Processes by Glen Takahara.

Questions, comments, or suggestions?

Outline

(1) A recap of Lecture 12
(2) Excursions
(3) Stationary Distribution

4 Calculation of Stationary Distribution
(5) Applications of Stationary Distribution

A recap of Lecture 12

Excursions

Stationary Distribution
Calculation of Stationary Distribution Applications of Stationary Distribution
(1) A recap of Lecture 12
(2) Excursions

3 Stationary Distribution
4. Calculation of Stationary Distribution
(5) Applications of Stationary Distribution
$\equiv \quad \neg 9 \curvearrowright$

Basic concepts of Markov chains

Definition

- A stochastic process which has the Markov perperty
- Time homogeneous

Representations

- Transition diagram: weighted directed graph
- Transition matrix: $P=\left(p_{i j}\right)_{i, j \in S}$

Reachability

- Period
- Hitting time $T_{i j}$

$$
\text { - } f_{i j}^{(t)} \triangleq \operatorname{Pr}\left(T_{i j}=t\right), f_{i j} \triangleq \sum_{t} f_{i j}^{(t)}
$$

Classification of states

Definition

- Transient if $f_{i i}<1$, otherwise recurrent
- Positive recurrent if $\mathbb{E}\left[T_{i i}\right]<\infty$, otherwise null recurrent

Equivalient definitions of recurrent states

- $\sum_{n} p_{i i}^{(n)}=\infty$
- $\mathbb{E}\left[J_{i} \mid X_{0}=i\right]=\infty, J_{i}$ is the number of times i is reached
- $\operatorname{Pr}\left(J_{i}=\infty \mid X_{0}=i\right)=1$

Corollary

- If i an j and i is recurrent, then so is j
- Cool! Counterpart of positive recurrent? See excursions...

（1）A recap of Lecture 12

（2）Excursions

（3）Stationary Distribution

4．Calculation of Stationary Distribution
（5）Applications of Stationary Distribution

Excursions

Stationary Distribution

Excursions: independent structure in Markov chains

If a Markov chain $\left\{X_{t}\right\}$ visits state i again and again

Hitting times

- $T_{i}=T_{i}^{(1)}=\min \left\{t>0: X_{t}=i\right\}$
- $T_{i}^{(r)}=\min \left\{t>T_{i}^{(r-1)}: X_{t}=i\right\}$

Excursion: trajectory between two successive visits to state i

- $\chi_{i}^{(r)}=\left\{X_{t}: T_{i}^{(r)} \leq t<T_{i}^{(r+1)}\right\}, r \geq 1$
- $\chi_{i}^{(0)}=\left\{X_{t}: 0 \leq t<T_{i}^{(1)}\right\}$

Excursions are i.i.d. random variables

Theorem

- $\chi_{i}^{(r)}, r \geq 0$, are independent
- $\chi_{i}^{(r)}, r \geq 1$, have the same distribution

Proof

It follows from the strong Markov property

Remark

- Dependence is annoying, but excursions decouple the chain into independent blocks
- The independent structure means so much ...

Revisiting positive recurrent states

Theorem

If $i \nrightarrow j$ and i is positive recurrent, then so is j

Proof

- i is positive recurrent, so there are infinitely many excursions
- The length of $\chi_{i}^{(r)}: T_{i}^{(r+1)}-T_{i}^{(r)}=T_{i i}$ with finite expectation
- Since $i \rightsquigarrow j$, starting from i, $p=\operatorname{Pr}($ reach j before returning to $i)>0$
- For each $r>0, j$ appears in $\chi_{i}^{(r)}$ with probability $p>0$
- $\operatorname{Pr}(j$ is reached $)=1$. Wlog., j is first reached in $\chi_{i}^{(0)}$
- R s.t. j is reached next in $\chi_{i}^{(R)}$? Geometric distribution
- $T_{j j} \leq R T_{i i} \Rightarrow j$ is positive recurrent (by Wald's equation)

Wow! One more examples

Excursions

Stationary Distribution

Law of large number in Markov chains

Law of large number
For i.i.d. r.v. $\left\{X_{n}\right\}, \operatorname{Pr}\left(\lim _{n \rightarrow \infty} \frac{X_{1}+\cdots X_{n}}{n}=\mathbb{E}\left[X_{1}\right]\right)=1$
What if X_{n} 's are states of a Markov chain?
Law of large number in Markov Chains
Assume Markov chain $\left\{X_{n}\right\}$ has a positive recurrent state a, $\operatorname{Pr}\left(a\right.$ is reached $\left.\mid X_{0}\right)=1$, and $f: S \rightarrow \mathbb{R}$ is bounded. Then

$$
\operatorname{Pr}\left(\lim _{t \rightarrow \infty} \frac{f\left(X_{0}\right)+\cdots f\left(X_{t}\right)}{t}=\bar{f}\right)=1
$$

where

$$
\bar{f}=\frac{\mathbb{E}\left[\sum_{n=0}^{T_{a a}-1} f\left(X_{n}\right)\right]}{\mathbb{E}\left[T_{a a}\right]}=\mathbb{E}_{\pi}[f]
$$

Proof

Basic idea

Break the sum into subsum over excursions, reducing to law of large number of i.i.d. r.v.
$N_{t}=\max \left\{r \geq 1: T_{a}^{(r)} \leq t\right\}: \# a$-excursions occurring in [0, t]

$N_{t}=5$ in this example

Irregular parts vanish
Full excursions are i.i.d. with expectation $\bar{f}=\frac{\mathbb{E}\left[\sum_{n=0}^{T_{a a}-1} f\left(X_{n}\right)\right]}{\mathbb{E}\left[T_{a a}\right]}$

（1）A recap of Lecture 12

（2）Excursions
（3）Stationary Distribution

4 Calculation of Stationary Distribution
（5）Applications of Stationary Distribution

三 つのく

Stationary Distribution

Motivation

(1) Given a positive recurrent state i, how to calculate $\mathbb{E}\left[T_{i i}\right]$?
(2) If t is sufficiently large, what is the distribution of X_{t} ?

Definition

A distribution π over S satisfying $\pi P=\pi$ is a stationary distribution of the Markov chain.

Fundamental Problems

(1) Given a Markov chain, does it have a stationary distribution?
(2) Is the stationary distribution unique?
(3) How to calculate it?

An example

Waiting for a bus

- When a bus arrives, Pr (the next arrives in i minutes $)=p(i)$
- X_{t} : the time till the arrival of the next bus
- Transition probability: $p_{i, i-1}=1, p_{0, i}=p(i), i \geq 1$

If a stationary distribution π exists

- It holds that $\pi(i)=\sum_{j \geq 0} \pi(j) p_{j, i}=\pi(0) p(i)+\pi(i+1)$
- This implies $\pi(i)=\pi(0) \sum_{j \geq i} p(j)$
- Since $\sum_{i \geq 0} \pi(i)=1$, we have $\pi(0)=\left(\sum_{i \geq 0} \sum_{j \geq i} p(j)\right)^{-1}$
- The stationary distribution exists if $\sum_{i \geq 0} \sum_{j \geq i} p(j)<+\infty$
- $\sum_{i \geq 0} \sum_{j \geq i} p(j)=\sum_{j \geq 0} \sum_{0 \leq i \leq j} p(j)$

$$
=\sum_{j \geq 0}(j+1) p(j)=\mathbb{E}\left[T_{00}\right]
$$

- The stationary distribution exists if 0 is positive recurrent

Is this correct in general?

Yes!

Existence Theorem of Stationary Distribution

Assume that a is a recurrent state. For any state x, define $\nu^{[a]}(x)=\mathbb{E}\left[\sum_{n=0}^{T_{a a}-1} \mathbf{1}\left(X_{n}=x\right)\right]$.

Lemma

$\nu^{[a]}=\nu^{[a]} P$.
For any state x s.t. $a \rightsquigarrow x$, we have $0<\nu^{[a]}(x)<+\infty$.

Theorem of existence

If the Markov chain has a positive recurrent state $a, \pi^{[a]} \triangleq \frac{\nu^{[a]}}{\mathbb{E}\left[T_{a a}\right]}$ is a stationary distribution.

Proof of the theorem

It immediately follows from the lemma

The Stationary Distribution is not Necessarily Unique

- Consider the Markov chain

- States 0 and 2 are positive recurrent, so stationary distributions exist
- For any $0 \leq \alpha \leq 1, \pi=(\alpha, 0,1-\alpha)$ is a stationary distribution. Not Unique!
- Note that the chain is reducible
- Does this cause the non-uniqueness?
- Yes!

Uniqueness Theorem

Theorem of uniqueness

For an irreducible Markov chain, its stationary distribution is unique if existent

Actually, when irreducible, if a stationary distribution π exists

- $\pi_{i} \mathbb{E}\left[T_{i i}\right]=1$ for every state
- All states must be positive recurrent

Markov chain with stationary distribution π

- $\pi_{j}=0$ if j is transient
- j is positive recurrent if $\pi_{j}>0$

Calculating Expected Return Time

When irreducible, $\pi(i)=\frac{1}{\mathbb{E}\left[T_{i i}\right]}$ for any i.

Calculating $\mathbb{E}\left[T_{i i}\right]$ is reduced to calculating the stationary distribution.

But how to calculate the stationary distribution?

Stability Theorem

Theorem of stability

Let π be the stationary distribution of an irreducible and ergodic (positive recurrent, aperiodic) Markov chain. Then
(1) $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(X_{n}=x\right)=\pi(x)$ for any initial distribution and any $x \in S$;
(2) $\lim _{n \rightarrow \infty} p_{y x}^{(n)}=\pi(x)$ for any $x, y \in S$.

Remarks

- Approximating by iteratively computing
- Each row of $P^{(n)}$ converges to π
- Though $\sum_{n} p_{y x}^{(n)}=+\infty$ when x is recurrent
- $\lim _{n \rightarrow \infty} p_{y x}^{(n)}>0$ if x is positive recurrent
- $\lim _{n \rightarrow \infty} p_{y x}^{(n)}=0$ if x is null recurrent

Sub-summary: fundamental theorems of Markov chains

Existence	Uniqueness	Stability
Positive recurrency	Irreducibility	Aperiodicity \cdots
$\pi^{[a]}(i)=\frac{\mathbb{E}\left[\sum_{n=1}^{T_{a a}} \mathbf{1}\left(X_{n}=i\right) \mid X_{0}=a\right.}{} \mathbb{E}^{[}\left[T_{a a}\right]$	$\pi=\pi^{[a]}$	$\lim _{n \rightarrow \infty} p_{j i}^{(n)}=\pi(i)$

Are the conditions necessary?

Excursions

Stationary Distribution
Calculation of Stationary Distribution

Positive Recurrency is Necessary for Existence

Theorem

If a Markov Chain has a stationary distribution π, then any state i with $\pi(i)>0$ is positive recurrent.

Does uniqueness imply irreducibility?

No!

However

It is weakly irreducible:
only one communicating class of positive recurrent states

Theorem

If a Markov chain has a unique stationary distribution, it has a unique communicating class of positive recurrent states

No Aperiodicity, No Stability

Consider the Markov chain with period 2.

$p_{11}^{(2 k)}=1$, but $p_{11}^{(2 k-1)}=0$. So, $\lim _{n} p_{11}^{(n)}$ does not exist.

- Generally, in case of period d, does $\lim _{n \rightarrow \infty} p_{j j}^{(n d)}$ exist?
- If existent, what's it?
- Yes!

The Normal Form of Periodic Markov Chain

Normal form theorem

Given an irreducible Markov chain with period d, the state space S can be uniquely partitioned into disjoint sets $C_{0}, C_{1}, \ldots C_{d-1}$ such that $\sum_{j \in C_{r+1 \text { mod } d}} p_{i j}=1$ for $i \in C_{r}, r=0,1, \ldots d-1$.

$$
=\begin{aligned}
& \lim _{n \rightarrow \infty} p_{i j}^{(r+n d)} \\
& =d \pi(j)=\frac{d}{\mathbb{E}\left[T_{j j}\right]}
\end{aligned}
$$

Sub-summary: fundamental theorems of Markov chains

Existence	Uniqueness	Stability
Positive recurrency	Irreducibility	Aperiodicity \cdots
$\pi^{[a]}(i)=\frac{\mathbb{E}\left[\sum_{n=1}^{T_{a a}} \mathbf{1}\left(X_{n}=i\right) \mid X_{0}=a\right.}{}{\mathbb{E}\left[T_{a a}\right]}$	$\pi=\pi^{[a]}$	$\lim _{n \rightarrow \infty} p_{j i}^{(n)}=\pi(i)$

All the conditions are (weakly) necessary!

(1) A recap of Lecture 12

(2) Excursions

3 Stationary Distribution

4 Calculation of Stationary Distribution
(5) Applications of Stationary Distribution

三 \quad 引ac

By limiting probability theorem

Compute iteratively or approximate by limits

By definition

- Solve the linear equation system $\pi=\pi P, \sum_{i \in S} \pi(i)=1$
- Flow balance theorem

Flow balance theorem

Flow balance

Let $A \subseteq S$ be a set of the states of a Markov chain, and π be a distribution over S. Define $F\left(A, A^{c}\right)=\sum_{i \in A, j \in A^{c}} \pi(i) p_{i j}$.

Theorem

π is a stationary distribution if and only if $F\left(A, A^{c}\right)=F\left(A^{c}, A\right)$ for all $A \subseteq S$.

Proof

(\Leftarrow) Prove by considering singletons A.
(\Rightarrow) Observe that $\pi_{i} \sum_{j} p_{i j}=\pi_{j} \sum_{j} p_{j i}$.

Example

Walk with a barrier

$$
q \circlearrowright \underbrace{\sim}_{\sim}
$$

Find the stationary distribution by definition $\pi(i)=p \pi(i-1)+q \pi(i+1)$ for all $i>0$.

By flow balance theorem

- For any $i>0$, let $A=\{0,1, \ldots i-1\}$
- $\pi(i-1) p=F\left(A, A^{c}\right)=F\left(A^{c}, A\right)=\pi(i) q$
- $\pi(i)=(p / q)^{i} \pi(0)$

(1) A recap of Lecture 12

(2) Excursions

3 Stationary Distribution
4. Calculation of Stationary Distribution
(5) Applications of Stationary Distribution

Application

Natural language processing

A fundamental problem: Computing the probability that a sentence appears. The computation is made possible by Markov hypothesis.

PageRank

Task: Assign importance to web pages.
Model: Web graph consists of linked pages. A typical process of surfing the Web is to follow links and randomly jump in case of dangling. So we get a Markov chain with transition probability

$$
\widehat{p}_{i j}= \begin{cases}1 /|L(i)| & \text { if } j \in L(i) \\ 1 /|V| & \text { if } L(i)=\emptyset \\ 0 & \text { otherwise }\end{cases}
$$

To guarantee irreducibility and aperiodicity, use bored surfer style. Namely $p_{i j} \triangleq(1-\alpha) \widehat{p}_{i j}+\frac{\alpha}{|V|}$.
The stationary distribution is the rank. Compute iteratively.

Random Walks on Undirected Graphs

Random walks

Let $G=(V, E)$ be a finite, undirected, and connected graph. A random walk on G is a Markov chain with $p_{u v}=\frac{1}{d_{u}}$ for $(u, v) \in E$

Period

A random walk on G is aperiodic iff G is not k-partite

Stationary distribution

Stationary distribution of a random walk on $G: \pi(v)=\frac{d(v)}{2|E|}$. So, expected return time $h_{u u} \triangleq \mathbb{E}\left[T_{u u}\right]=\frac{2|E|}{d(u)}$.

Expected Hitting Time and Cover Time

Claim: If $(u, v) \in E$, then $h_{v u}<2|E|$.
Proof: Use the fact that $\frac{2|E|}{d(u)}=h_{u u}=\frac{1}{d(u)} \sum_{v \in N(u)}\left(1+h_{v u}\right)$.

Cover time

Claim: The cover time of $G=(V, E)$ is no more than $4|V| \cdot|E|$. Proof: Explore the Eulerian tour on a spanning tree of G. The expected time to go through the vertices $v_{0}, v_{1}, \ldots v_{2|V|-2}=v_{0}$ upper bounds the cover time.

Parrondo's Paradox (since 1996)

A question that seems silly at the first glance

Can you combine two losing games to get a winning one?
Yes!

The magic example

- Game G_{1} : flip coin a with head probability $p_{a}<\frac{1}{2}$. You win a dollar if you get Head, otherwise lose a dollar.
- Game G_{2} : Let l be the number of losses so far and w be that of wins. You have coins b and c. Flip b if $w-l=0(\bmod 3)$, and flip c otherwise. You win a dollar if you get Head, otherwise lose a dollar.
- Game G_{3} : repeatedly flip a fair coin d. If you get Head, proceed as in game G_{1}; otherwise proceed to G_{2}.

When $p_{a}=0.49, p_{b}=0.09, p_{c}=0.74, A$ and B are losing games while C is a winning one.

An intuitive interpretation

A
 B

Both cases get a tie

- In both cases, B wins
- If the cases appear alternately, A can win

Randomness is not necessary
G_{1}^{\prime} : lose 1. G_{2}^{\prime} : lose 5 for odd capital, win 3 otherwise.
G_{3}^{\prime} : Play alternatively, beginning with G_{2}^{\prime}

Why?

The difficulty lies in analyzing G_{2}

Try to determine the relative probability of reaching -3 or +3 first, or study the probability of wins in stationary distribution.

Game G_{3} is like G_{2}, except that the head probabilities are slightly different.

References

- Lecture Notes of Stochastic Processes, by Glen Takahara http://www.mast.queensu.ca/~stat455/
- Introductory Lecture Notes on Markov Chains And Random Walks, by Takis Konstantopoulos http://www2.math.uu.se/~takis/L/McRw/mcrw.pdf
- Section 2, Lecture 16 of Lecture notes on Probability and Computing by Ryan O'Donnell
- Section 7.4\&7.5 of the textbook Probability and Computing

Thank you! Happy the year of pig!

