Homework of Week 11

Deadline: 9:00am, January 3 (Thursday), 2019

1. Use the Lovász Local Lemma to show that, if

$$
4\binom{k}{2}\binom{n}{k-2} 2^{1-\binom{k}{2}} \leq 1
$$

then it is possible to color the edges of K_{n} with two colors so that it has no monochromatic K_{k} subgraphs. Note that this is better than the result obtained by counting.
2. Let $G=(V, E)$ be an undirected graph and suppose each $v \in V$ is associated with a set $S(v)$ of $8 r$ colors, where $r \geq 1$. Suppose, in addition, that for each $v \in V$ and $c \in S(v)$ there are at most r neighbors u of v such that c lies in $S(u)$. Prove that there is a coloring of G which assigns to each vertex v a color from $S(v)$ such that, for any edge $(u, v) \in E$, the colors assigned to u and v are different. [Let $A_{u, v, c}$ be the event that u and v are both colored with color c and apply the symmetric Lovász Local Lemma.]
3. Given $\beta>0$, a vertex-coloring of a graph G is said to be β-frugal if (i) each pair of adjacent vertices has different colors, and (ii) no vertex has $\beta+1$ neighbors that have the same color. Prove that if G has maximum degree $\Delta \geq \beta^{\beta}$ with $\beta \geq 2$, then G has a β-frugal coloring with $16 \Delta^{1+1 / \beta}$ colors. [Hint: you may need to define two types of events corresponding to the two conditions of being β-frugal. Then an asymmetric Lovász Local Lemma can be used.]
4. Do Bernoulli experiment for 20 trials, using a new 1-Yuan coin. Record the result in a string $s_{1} s_{2} \ldots s_{i} \ldots s_{20}$, where s_{i} is 1 if the $i^{\text {th }}$ trial gets Head, and otherwise is 0 .

