Homework of Week 11

Deadline: 9:00am, January 3 (Thursday), 2019

1. Use the Lovász Local Lemma to show that, if

$$4\binom{k}{2}\binom{n}{k-2}2^{1-\binom{k}{2}} \le 1,$$

then it is possible to color the edges of K_n with two colors so that it has no monochromatic K_k subgraphs. Note that this is better than the result obtained by counting.

- 2. Let G = (V, E) be an undirected graph and suppose each $v \in V$ is associated with a set S(v) of 8r colors, where $r \geq 1$. Suppose, in addition, that for each $v \in V$ and $c \in S(v)$ there are at most r neighbors u of v such that c lies in S(u). Prove that there is a coloring of G which assigns to each vertex v a color from S(v) such that, for any edge $(u, v) \in E$, the colors assigned to u and v are different. [Let $A_{u,v,c}$ be the event that u and v are both colored with color c and apply the symmetric Lovász Local Lemma.]
- 3. Given $\beta > 0$, a vertex-coloring of a graph G is said to be β -frugal if (i) each pair of adjacent vertices has different colors, and (ii) no vertex has $\beta + 1$ neighbors that have the same color. Prove that if G has maximum degree $\Delta \ge \beta^{\beta}$ with $\beta \ge 2$, then G has a β -frugal coloring with $16\Delta^{1+1/\beta}$ colors. [Hint: you may need to define two types of events corresponding to the two conditions of being β -frugal. Then an asymmetric Lovász Local Lemma can be used.]
- 4. Do Bernoulli experiment for 20 trials, using a new 1-Yuan coin. Record the result in a string $s_1s_2...s_i...s_{20}$, where s_i is 1 if the i^{th} trial gets Head, and otherwise is 0.