## Home Work of Week 10

## Deadline: 9:00am, December 20 (Thursday), 2018

1. Consider a graph in $G_{n, p}$ with $p=c \frac{\ln n}{n}$. Use the second moment method to prove that if $c<1$ then, for any constant $\epsilon>0$ and for $n$ sufficiently large, the graph has isolated vertices with probability at least $1-\epsilon$.
2. Can you use Hoeffding's inequality to improve the upper bound of the distinct subset sum problem?
3. Suppose $H$ is a hypergraph where each edge has $r$ vertices and meets at most $d$ other edges. Assume that $d \leq 2^{r-3}$. Prove that $H$ is 2-colorable, i.e. one can color the vertices in red or blue so that no monochromatic edges exist.
4. Do Bernoulli experiment for 20 trials, using a new 1-Yuan coin. Record the result in a string $s_{1} s_{2} \ldots s_{i} \ldots s_{20}$, where $s_{i}$ is 1 if the $i^{\text {th }}$ trial gets Head, and otherwise is 0 .
