SOLUTION MANUAL FOR PROBABILISTIC METHOD AND RANDOM GRAPHS

RUI ZHANG

AbStract. In this note, we present solutions for selected homework problems for course Probabilistic method and random graphs: http://z14120902.github.io/ pm.html.

Contents

1. HW1
2. HW2
3. HW4 2
4. HW5 2
5. HW6 3
6. HW7 3
7. HW8 3
8. HW9 4
9. HW10 4
10. HW11 4

References 4
11. Key points for final 5

1. HW1
2. Memoryless implies

$$
\forall m, n \in \mathbb{Z}^{+}: \mathbf{P}(X>m+n \mid X>m)=\mathbf{P}(X>n)
$$

or
or

$$
\forall m, n \in \mathbb{Z}^{+}: \frac{\mathbf{P}(X>m+n \cap X>m)}{\mathbf{P}(X>m)}=\frac{\mathbf{P}(X>m+n)}{\mathbf{P}(X>m)}=\mathbf{P}(X>n)
$$

the rest will be easy.
2.

1. Recall Coupon collector's problem, there are 2 coupons in this case

$$
\mathbf{E} X=1+2=3
$$

2.

- after first kid, success within 5 kids: $\sum_{i=1}^{4} \frac{i}{2^{i}}=\frac{13}{8}$
- after first kid, fail within 5 kids: $4 \frac{1}{2^{4}}=\frac{1}{4}$
$\mathbf{E} X=1+\frac{13}{8}+\frac{1}{4}=\frac{23}{8}$

2. HW2
3.

$$
\mathbf{P}\left(X \geq(1+\delta) \mu_{H}\right)=\mathbf{P}\left(e^{\lambda X} \geq e^{\lambda(1+\delta) \mu_{H}}\right) \leq \frac{\mathbf{E}\left[e^{\lambda X]}\right.}{e^{\lambda(1+\delta) \mu_{H}}}=\frac{\mathbf{E}\left[e^{\lambda \sum_{i=1}^{n} X_{i}}\right]}{e^{\lambda(1+\delta) \mu_{H}}}=\frac{e^{\sum_{i=1}^{n}\left(p_{i} e^{\lambda}+\left(1-p_{i}\right)\right)}}{e^{\lambda(1+\delta) \mu_{H}}} \leq \frac{e^{\sum_{i=1}^{n} p_{i}\left(e^{\lambda}-1\right)}}{e^{\lambda(1+\delta) \mu_{H}}}=\frac{e^{\mu\left(e^{\lambda}-1\right)}}{e^{\lambda(1+\delta) \mu_{H}}} \leq \frac{e^{\mu_{H}\left(e^{\lambda}-1\right)}}{e^{\lambda(1+\delta) \mu_{H}}}=\left(\frac{e^{\left(e^{\lambda}-1\right)}}{e^{\lambda(1+\delta)}}\right)^{\mu_{H}}
$$

the rest will be easy.
2. we need the following

$$
\mathbf{E}\left[e^{\lambda a_{i} X_{i}}\right]=p_{i} e^{\lambda a_{i}}+1-p_{i}=1+p_{i}\left(e^{\lambda a_{i}}-1\right) \leq \underline{e^{p_{i}\left(e^{\lambda a_{i}}-1\right)} \leq e^{p_{i} a_{i}\left(e^{\lambda}-1\right)}}
$$

or
or

$$
e^{\lambda a_{i}}-1 \leq a_{i}\left(e^{\lambda}-1\right)
$$

$$
\frac{e^{\lambda a_{i}}-1}{a_{i}} \leq \frac{e^{\lambda * 1}-1}{1}
$$

this is slope of line through $\left(x, e^{\lambda x}\right)$ and $(0,1)$, which is obvious via plot of function $e^{\lambda x}$, the rest will be easy.
3.

$$
\mathbf{E} f(Z)=\sum_{i} p_{i} f\left(z_{i}\right)=\sum p_{i} f\left(z_{i} * 1+\left(1-z_{i}\right) * 0\right) \leq \sum_{i} p_{i} z_{i} f(1)+p_{i}\left(1-z_{i}\right) f(0)=p f(1)+(1-p) f(0)=\mathbf{E} f(X)
$$

2. Omit

3. HW4

1. the exact probability is

$$
\mathbf{P}(n \text { bins } m \text { balls max load }=1)=\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{m-1}{n}\right)
$$

1. we need \mathbf{P} (n bins m balls max load $=1$) $\leq \frac{1}{e}$ or

$$
\mathbf{P}(n \text { bins } m \text { balls max load }=1) \leq e^{-\frac{1}{n}} e^{-\frac{2}{n}} \ldots e^{-\frac{m-1}{n}}=e^{-\frac{m(m-1)}{2 n}} \leq \frac{1}{e}
$$

we can calculate m
2. we need \mathbf{P} (n bins m balls max load $=1$) $\geq \frac{1}{2}$ or

$$
\mathbf{P}(n \text { bins } m \text { balls max load }=1) \geq e^{-\frac{1}{n}-\frac{1}{n^{2}}} e^{-\frac{2}{n}-\frac{2^{2}}{n^{2}}} \ldots e^{-\frac{m-1}{n}-\frac{(m-1)^{2}}{n^{2}}}=e^{-\frac{m(m-1)}{2 n}-\frac{(m-1) m(2 m-1)}{6 n^{2}}} \geq \frac{1}{2}
$$

we can calculate m
2.

1. $\mathbf{P}(X=n)=e^{-\mu} \frac{\mu^{n}}{n!}$

$$
\begin{gathered}
\mathbf{P}(Y=k)=\sum_{n=k}^{\infty} \mathbf{P}(X=n)\binom{n}{k} p^{k}(1-p)^{n-k}=\sum_{n=k}^{\infty} e^{-\mu} \frac{\mu^{n}}{n!}\binom{n}{k} p^{k}(1-p)^{n-k} \\
=\frac{e^{-\mu} p^{k}}{k!} \sum_{n=k}^{\infty} \frac{\mu^{n}(1-p)^{n-k}}{(n-k)!}=\frac{e^{-\mu}(\mu p)^{k}}{k!} \sum_{n=k}^{\infty} \frac{\mu^{n-k}(1-p)^{n-k}}{(n-k)!}=\frac{e^{-\mu}(\mu p)^{k}}{k!} e^{\mu(1-p)}=e^{-\mu p} \frac{(\mu p)^{k}}{k!}
\end{gathered}
$$

Z can be proved likewise
2.
$\mathbf{P}\left(Y=k_{1}, Z=k_{2}\right)=\mathbf{P}\left(X=k_{1}+k_{2}\right)\binom{k_{1}+k_{2}}{k_{1}} p^{k_{1}}(1-p)^{k_{2}}=e^{-\mu} \frac{\mu^{k_{1}+k_{2}}}{\left(k_{1}+k_{2}\right)!} \frac{\left(k_{1}+k_{2}\right)!}{k_{1}!k_{2}!} p^{k_{1}}(1-p)^{k_{2}}=e^{-\mu p} \frac{(\mu p)^{k_{1}}}{k_{1}!} e^{-\mu(1-p)} \frac{(\mu(1-p))^{k_{2}}}{k_{2}!}=\mathbf{P}\left(Y=k_{1}\right) \mathbf{P}\left(Z=k_{2}\right)$
3.

1. $\underline{\text { for } n=1}$, there are no other students

$$
\mathbf{P}(2 \text { students same birthday })=0
$$

for $n \in\{2, \ldots, 365\}$
the probability of max load is 1 is

$$
\mathbf{P}(\max \operatorname{load}=1)=\left(1-\frac{1}{365}\right)\left(1-\frac{2}{365}\right) \ldots\left(1-\frac{n-1}{365}\right)
$$

thus

$$
\mathbf{P}(2 \text { students same birthday })=1-\left(1-\frac{1}{365}\right)\left(1-\frac{2}{365}\right) \ldots\left(1-\frac{n-1}{365}\right)
$$

for $n \in\{365,366, \ldots\}$

$$
\mathbf{P}(2 \text { students same birthday })=1
$$

for $n=1$, there are no other students

$$
\mathbf{P} \text { (existing another students same birthday })=0
$$

for $n \in\{2, \ldots, 365\}$
$\mathbf{P}($ no other students same birthday $)=\left(\frac{364}{365}\right)^{n-1}$
\mathbf{P} (existing another students same birthday) $=1-\left(\frac{364}{365}\right)^{n-1}$
4. $\mathbf{P}(X \geq x) \leq \frac{\mathbf{E} e^{\lambda X}}{e^{\lambda x}}=\frac{e^{\mu\left(e^{x}-1\right)}}{e^{\lambda x}}$. let $\lambda=\ln \left(\frac{x}{\mu}\right)$

4. HW5

1. This is called Brun's sieve, Alon's book chapter 8.3.
2.
3. probability of a bin with load 1

$$
\mathbf{P}\left(X_{i}=1\right)=\binom{b}{1} \frac{1}{n}\left(1-\frac{1}{n}\right)^{b-1}
$$

the expected balls will be served

$$
\mathbf{E} X=n \mathbf{P}\left(X_{i}=1\right)=b\left(1-\frac{1}{n}\right)^{b-1}
$$

thus, expected number of balls at the start of the next round $b-b\left(1-\frac{1}{n}\right)^{b-1}$
2.

$$
x_{j+1}=x_{j}-x_{j}\left(1-\frac{1}{n}\right)^{x_{j}-1}=x_{j}\left[1-\left(1-\frac{1}{n}\right)^{x_{j}-1}\right]
$$

consider $f(x)=\left(1-\frac{1}{n}\right)^{x+1}-\left(1-\frac{x}{n}\right)$, we can get $x_{j+1} \leq \frac{x_{j}^{2}}{n}$ or $\ln x_{j+1} \leq 2 \ln x_{j}-\ln n$ the rest will be easy.
3. Recall Poisson Approximation Theorem. $\mathbf{P}\left(X_{1} \neq 0 \cap \cdots \cap X_{n} \neq 0 \mid \sum X_{i}=k\right)$ is the same probability of all bins are not empty in k balls into n bins model, the probability increases with k for the obvious reason.
4. Recall Poisson Approximation Theorem. $\lim _{n \rightarrow \infty} \mathbf{P}(\mathscr{E} \mid X=m+\sqrt{2 m \ln m})-\mathbf{P}(\mathscr{E} \mid X=m-\sqrt{2 m \ln m}) \leq$ the probability of at least one empty bin after throwing $m-\sqrt{2 m \ln m}$ balls but at least one among the next $2 \sqrt{2 m \ln m}$ balls goes into that bin

$$
\leq \lim _{n \rightarrow \infty} \frac{2 \sqrt{2 m \ln m}}{n}=\lim _{n \rightarrow \infty} \frac{2 \sqrt{2 n \ln n \ln (n \ln n)}}{n}=\lim _{n \rightarrow \infty} \frac{2 \sqrt{2 n(\ln n)^{2}+2 n \ln n \ln \ln n}}{n} \sim \lim _{n \rightarrow \infty} \frac{\ln n}{\sqrt{n}} \rightarrow 0
$$

5. HW6

1.
2. $m=n, \lambda=1: e \sqrt{n}\left(e^{-1} \frac{1^{1}}{1!}\right)^{n} \leq \sqrt{n} e^{1-n}$
3. $\frac{n!}{n^{n}}$
4. [Mitzenmacher and Upfal, 2005] Theorem 5.10
5. HW7
6. for any graph G over n vertices, we need to prove for model \mathscr{G}_{n} and $\mathscr{G}_{n, \frac{1}{2}}$

$$
\mathbf{P}_{\mathscr{G}_{n}}(G)=\mathbf{P}_{\mathscr{G}_{n, \frac{1}{2}}}(G)=\frac{1}{2^{\left({ }_{2}^{n}\right)}}
$$

2. [Erdos and R\&WI, 1959] Theorem 1
3. HW8
4. we need

$$
p=\mathbf{P}\left(|S| \geq \frac{|V|}{D+1}\right) \geq \frac{1}{2 D|V|^{2}}
$$

since

$$
\begin{gathered}
\mathbf{E}|S| \geq \sum_{i=1}^{n} \frac{1}{d_{i}+1} \geq \frac{|V|}{D+1} \\
\mathbf{E}|S|=\sum_{|S| \geq \frac{|V|}{D+1}}|S| \mathbf{P}(|S|)+\sum_{\left\lvert\, S<\frac{|V|}{D+1}\right.}|S| \mathbf{P}(|S|) \leq|V| p+\left(\frac{|V|}{D+1}-1\right)(1-p)
\end{gathered}
$$

thus

$$
|V| p+\left(\frac{|V|}{D+1}-1\right)(1-p) \geq \frac{|V|}{D+1}
$$

thus

$$
p\left(\frac{D|V|}{D+1}+1\right) \geq 1
$$

thus

$$
p \geq \frac{D+1}{D+1+D|V|}>\frac{1}{2 D|V|^{2}}
$$

2.
3. It is an independent set because of the construction process: for each vertex $i, i \in S(\sigma)$ if and only if no neighbor j of i precedes i in the permutation σ. For vertex i and its neighbors $\Gamma(i)$, only one of them can be chosen.
4. random permutation
5.
6. consider 2 -color edges of K_{n}
$\mathbf{P}($ a 4-clique is monochromatic $)=2 * \frac{1}{2^{\binom{4}{2}}}=2^{-5}$
thus

$$
\text { total number of monochromatic copies of } K_{4} \leq\binom{ n}{4} 2^{-5}
$$

2. randomly assign color to edges

8. HW9

1.

$$
\mathbf{E}\left[\text { total number of monochromatic copies of } K_{k} \text { for 2-coloring the edges of } K_{n}\right]=2 *\binom{n}{k} \frac{1}{2\binom{k}{2}}=\binom{n}{k} 2^{1-\binom{k}{2}}
$$

we remove 1 vertex from each above monochromatic copies of K_{k}, we will have a $K_{x}: x=n-\binom{n}{k} 2^{1-\binom{k}{2}}$. And there are no monochromatic copies of K_{k}.
2. Use the derandomization techinique mentioned in the class. Choose each assignment that makes total number of monochromatic copies below its expectation.

```
Algorithm 1 find monochromatic \(K_{4}\)
    edges : \(=x_{1}, x_{2}, \ldots, x_{m}\)
    color choices \(:=v_{k} \in\{0,1\}\)
    for \(k=1\) to \(m\) do
                    \(x_{k}=\underset{v_{k} \in\{0,1\}}{\operatorname{argmin}} \mathbf{E}\left[\right.\) total number of monochromatic \(\left.K_{4} \mid x_{1}=v_{1}, \ldots, x_{k-1}=v_{k-1}, x_{k}=v_{k}\right]\)
    end for
```

3. similar idea
```
Algorithm 2 permutation \(\sigma\)
    vertices \(V:=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\)
    permutated vertices \(X:=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\)
    for \(k=1\) to \(n\) do
        \(x_{k}=\underset{v_{k} \in V \backslash\left\{v_{1}, v_{2}, \ldots, v_{k-1}, N\left(v_{1}\right), N\left(v_{2}\right), \ldots, N\left(v_{k-1}\right)\right\}}{\operatorname{argmax}} \mathbb{E}\left[S(\sigma) \mid x_{1}=v_{1}, \ldots, x_{k-1}=v_{k-1}, x_{k}=v_{k}\right]\)
    end for
```


9. HW10

1. https://people.math.osu.edu/nguyen.1261/6501/Note-random1.pdf
2. Discussed in class. One of the difficulties might be random variables are not independent.
3. A direct applicaiton of LLL. $p=\frac{2}{2^{r}}, d \leq 2^{r-3} .4 p d=4 \frac{2}{2^{r}} d \leq 4 \frac{2}{2^{r}} 2^{r-3}=1$
4. HW11
5. A direct applicaiton of LLL. $p=2^{1-\binom{k}{2}}, d \leq\binom{ k}{2}\binom{n}{k-2} .4 p d=4\binom{k}{2}\binom{n}{k-2} 2^{1-\binom{k}{2}}$
6. A direct applicaiton of LLL. $p=\frac{1}{8 r}, d \leq 2(r-1) .4 p d=4 \frac{1}{8 r} 2(r-1)<1$
7. https://people.eecs.berkeley.edu/~sinclair/cs271/n24.pdf Theorem 24.11

References

11. Key points for final

- Chernoff bound technique: Moment-generating function + Markov inequlity
- bin and ball model
- Union bound
- 2 forms of local lemma: $4 p d, x_{i} \prod_{j \in \Gamma(i)}\left(1-x_{j}\right)$

