
SOLUTION MANUAL FOR PROBABILISTIC METHOD AND RANDOM GRAPHS

RUI ZHANG

ABSTRACT. In this note, we present solutions for selected homework problems for course Probabilistic method and random graphs: http://z14120902.github.io/
pm.html.
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1. HW1

1. Memoryless implies
∀m,n ∈Z+ : P (X > m+n | X > m)=P (X > n)

or
∀m,n ∈Z+ :

P (X > m+n∩ X > m)
P (X > m)

= P (X > m+n)
P (X > m)

=P (X > n)

or
∀m,n ∈Z+ : P (X > m+n)=P (X > m)P (X > n)

the rest will be easy.

2.

1. Recall Coupon collector’s problem, there are 2 coupons in this case

EX = 1+2= 3

2.
• after first kid, success within 5 kids:

∑4
i=1

i
2i = 13

8
• after first kid, fail within 5 kids: 4 1

24 = 1
4

EX = 1+ 13
8 + 1

4 = 23
8

2. HW2

1.

P
(
X ≥ (1+δ)µH

)=P
(
eλX ≥ eλ(1+δ)µH

)
≤ E[eλX ]

eλ(1+δ)µH
= E[eλ

∑n
i=1 X i ]

eλ(1+δ)µH
= e

∑n
i=1

(
pi eλ+(1−pi)

)
eλ(1+δ)µH

≤ e
∑n

i=1 pi
(
eλ−1

)
eλ(1+δ)µH

= eµ
(
eλ−1

)
eλ(1+δ)µH

≤ eµH
(
eλ−1

)
eλ(1+δ)µH

=
(

e
(
eλ−1

)
eλ(1+δ)

)µH

the rest will be easy.

2. we need the following
E[eλai X i ]= pi eλai +1− pi = 1+ pi

(
eλai −1

)
≤ epi

(
eλai−1

)
≤ epiai

(
eλ−1

)
or

eλai −1≤ ai
(
eλ−1

)
or

eλai −1
ai

≤ eλ∗1 −1
1

this is slope of line through
(
x, eλx

)
and (0,1), which is obvious via plot of function eλx, the rest will be easy.

3.
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1.
E f (Z)=

∑
i

pi f
(
zi

)=∑
pi f

(
zi ∗1+ (

1− zi
)∗0

)≤∑
i

pi zi f (1)+ pi
(
1− zi

)
f (0)= pf (1)+ (1− p) f (0)=E f (X )

2. Omit

3. HW4

1. the exact probability is

P (n bins m balls max load= 1)=
(
1− 1

n

)(
1− 2

n

)
. . .

(
1− m−1

n

)
1. we need P (n bins m balls max load= 1)≤ 1

e or

P (n bins m balls max load= 1)≤ e−
1
n e−

2
n . . . e−

m−1
n = e−

m(m−1)
2n ≤ 1

e
we can calculate m

2. we need P (n bins m balls max load= 1)≥ 1
2 or

P (n bins m balls max load= 1)≥ e−
1
n− 1

n2 e−
2
n− 22

n2 . . . e−
m−1

n − (m−1)2

n2 = e−
m(m−1)

2n − (m−1)m(2m−1)
6n2 ≥ 1

2
we can calculate m

2.

1. P (X = n)= e−µ µn

n!

P (Y = k)=
∞∑

n=k
P (X = n)

(
n
k

)
pk (1− p)n−k =

∞∑
n=k

e−µ µn

n!

(
n
k

)
pk (1− p)n−k

= e−µpk

k!

∞∑
n=k

µn (1− p)n−k

(n−k)!
= e−µ

(
µp

)k

k!

∞∑
n=k

µn−k (1− p)n−k

(n−k)!
= e−µ

(
µp

)k

k!
eµ(1−p) = e−µp

(
µp

)k

k!

Z can be proved likewise

2.

P (Y = k1, Z = k2)=P (X = k1 +k2)

(
k1 +k2

k1

)
pk1 (1− p)k2 = e−µ µk1+k2

(k1 +k2)!
(k1 +k2)!

k1!k2!
pk1 (1− p)k2 = e−µp

(
µp

)k1

k1!
e−µ(1−p)

(
µ (1− p)

)k2

k2!
=P (Y = k1)P (Z = k2)

3.

1. for n = 1, there are no other students

P (2 students same birthday)= 0

for n ∈ {2, . . . ,365}
the probability of max load is 1 is

P (max load= 1)=
(
1− 1

365

)(
1− 2

365

)
. . .

(
1− n−1

365

)
thus

P (2 students same birthday)= 1−
(
1− 1

365

)(
1− 2

365

)
. . .

(
1− n−1

365

)
for n ∈ {365,366, . . . }

P (2 students same birthday)= 1

2. for n = 1, there are no other students

P (existing another students same birthday)= 0

for n ∈ {2, . . . ,365}

P (no other students same birthday)=
(

364
365

)n−1

P (existing another students same birthday)= 1−
(

364
365

)n−1

4. P (X ≥ x)≤ EeλX

eλx = eµ(ex−1)
eλx . let λ= ln

(
x
µ

)
4. HW5

1. This is called Brun’s sieve, Alon’s book chapter 8.3.

2.
2



1. probability of a bin with load 1

P
(
X i = 1

)= (
b
1

)
1
n

(
1− 1

n

)b−1

the expected balls will be served

EX = nP
(
X i = 1

)= b
(
1− 1

n

)b−1

thus, expected number of balls at the start of the next round b−b
(
1− 1

n

)b−1

2.

x j+1 = x j − x j

(
1− 1

n

)x j−1
= x j

[
1−

(
1− 1

n

)x j−1
]

consider f (x)=
(
1− 1

n

)x+1 − (
1− x

n
)
, we can get x j+1 ≤ x2

j
n or ln x j+1 ≤ 2ln x j − lnn the rest will be easy.

3. Recall Poisson Approximation Theorem. P
(
X1 ̸= 0∩·· ·∩ Xn ̸= 0 |∑ X i = k

)
is the same probability of all bins are not empty in k balls into n bins

model, the probability increases with k for the obvious reason.

4. Recall Poisson Approximation Theorem. limn→∞P
(
E |X = m+p

2m lnm
)
−P

(
E |X = m−p

2m lnm
)
≤ the probability of at least one empty bin after

throwing m−p
2m lnm balls but at least one among the next 2

p
2m lnm balls goes into that bin

≤ lim
n→∞

2
p

2m lnm
n

= lim
n→∞

2
√

2n lnn ln(n lnn)
n

= lim
n→∞

2
√

2n (lnn)2 +2n lnn lnlnn

n
∼ lim

n→∞
lnnp

n
→ 0

5. HW6

1.

1. m = n,λ= 1: e
p

n
(
e−1 11

1!

)n ≤p
ne1−n

2. n!
nn

2. [Mitzenmacher and Upfal, 2005] Theorem 5.10

6. HW7

1. for any graph G over n vertices, we need to prove for model Gn and Gn, 1
2

PGn (G)=PGn, 1
2

(G)= 1

2
(n

2

)
2. [Erdos and R&WI, 1959] Theorem 1

7. HW8

1. we need

p =P
(
|S| ≥ |V |

D+1

)
≥ 1

2D|V |2
since

E|S| ≥
n∑

i=1

1
di +1

≥ |V |
D+1

E|S| = ∑
|S|≥ |V |

D+1

|S|P (|S|)+
∑

|S< |V |
D+1

|S|P (|S|)≤ |V |p+
( |V |

D+1
−1

)
(1− p)

thus

|V |p+
( |V |

D+1
−1

)
(1− p)≥ |V |

D+1
thus

p
(

D|V |
D+1

+1
)
≥ 1

thus

p ≥ D+1
D+1+D|V | >

1
2D|V |2

2.

1. It is an independent set because of the construction process: for each vertex i, i ∈ S (σ) if and only if no neighbor j of i precedes i in the permutation
σ. For vertex i and its neighbors Γ (i), only one of them can be chosen.

2. random permutation

3.
3



1. consider 2-color edges of Kn

P (a 4-clique is monochromatic)= 2∗ 1

2
(

4
2

) = 2−5

thus

total number of monochromatic copies of K4 ≤
(
n
4

)
2−5

2. randomly assign color to edges

8. HW9

1.

E[total number of monochromatic copies of Kk for 2-coloring the edges of Kn]= 2∗
(
n
k

)
1

2
(k

2

) =
(
n
k

)
21−

(k
2

)
we remove 1 vertex from each above monochromatic copies of Kk, we will have a Kx : x = n−(n

k
)
21−

(k
2

)
. And there are no monochromatic copies of Kk.

2. Use the derandomization techinique mentioned in the class. Choose each assignment that makes total number of monochromatic copies below its
expectation.

Algorithm 1 find monochromatic K4

edges := x1, x2, . . . , xm
color choices := vk ∈ {0,1}
for k = 1 to m do

xk = argmin
vk∈{0,1}

E
[
total number of monochromatic K4 | x1 = v1, . . . , xk−1 = vk−1, xk = vk

]
end for

3. similar idea

Algorithm 2 permutation σ

vertices V := {v1,v2, . . . ,vn}
permutated vertices X := {x1, x2, . . . , xn}
for k = 1 to n do

xk = argmax
vk∈V\{v1,v2,...,vk−1,N(v1),N(v2),...,N(vk−1)}

E
[
S (σ) |x1 = v1, . . . , xk−1 = vk−1, xk = vk

]
end for

9. HW10

1. https://people.math.osu.edu/nguyen.1261/6501/Note-random1.pdf

2. Discussed in class. One of the difficulties might be random variables are not independent.

3. A direct applicaiton of LLL. p = 2
2r , d ≤ 2r−3. 4pd = 4 2

2r d ≤ 4 2
2r 2r−3 = 1

10. HW11

1. A direct applicaiton of LLL. p = 21−
(k

2

)
, d ≤ (k

2
)( n

k−2
)
. 4pd = 4

(k
2
)( n

k−2
)
21−

(k
2

)
2. A direct applicaiton of LLL. p = 1

8r , d ≤ 2(r−1). 4pd = 4 1
8r 2(r−1)< 1

3. https://people.eecs.berkeley.edu/~sinclair/cs271/n24.pdf Theorem 24.11
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11. KEY POINTS FOR FINAL

• Chernoff bound technique: Moment-generating function + Markov inequlity
• bin and ball model
• Union bound
• 2 forms of local lemma: 4pd, xi

∏
j∈Γ(i)

(
1− x j

)
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