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1. Pre-Calculus

• A function assigns each element in the domain to one element in the range
• Injective(one-to-one): no two elements are mapped to the same element (|domain| ≤ |range|)
• Surjective(onto): every element in the range is the image of some element in the domain (|domain| ≥ |range|)
• Bijective: one-to-one and onto. We can define inverse function
• Factor theorem: x = r is a root of polynomial p(x) = 0 ⇔ x− k is a factor of p(x)
• Fundamental theorem of algebra: every polynomial if degree n ≥ 1 has at least one root(real or complex)
• Every polynomial of degree n has exactly n roots: an

∏
(x− ri)

mi

• For polynomial equation:
∑

ri = −an−1

an
,
∏

ri = (−1)n a0
an

• Rational root theorem: if p(x) =
∑n

i=0 aix
i, ai ∈ Q has rational roots. They must be a factor of a0

a factor of an

• Conjugate radical root theorem: if
∑n

i=0 aix
i = 0, ai ∈ Q has a root a + b

√
c,

√
c is irrational, it must also

has a− b
√
c

• Complex conjugate root theorem: if
∑n

i=0 aix
i = 0, ai ∈ R has a root a+ bi, it must also has a− bi

• log(ab) = log a+ log b, log(ab ) = log a− log b

• cscx = 1
sinx , secx = 1

cosx , cotx = 1
tanx

• sinhx = ex−e−x

2 , coshx = ex+e−x

2

• 1 + tan2 x = sec2 x, 1 + cot2 x = csc2 x
• sin(a± b) = sin a cos b± cos a sin b
• cos(a± b) = cos a cos b∓ sin a sin b
• tan(a± b) = tan a±tan y

1∓tanx tan y

• sin 2x = 2 sinx cosx, cos 2x = cos2 x− sin2 x = 1− 2 sin2 x = 2 cos2 x− 1, tan 2x = 2 tanx
1−tan2 x

• tan x
2 = sinx

1+cosx = 1−cosx
sinx = cscx− cotx

• ∀x : f(x) ≥ B: bounded below by B
• parabola: y2 = 4px: the same distance to (p, 0) and to line x = −p

• ellipse: x2

a2
+ y2

b2
= 1: sum of distances to foci(±

√
a2 − b2, 0) is 2a

• hyperbola: x2

a2
− y2

b2
= 1: differences of distances to foci(±

√
a2 + b2, 0) is 2a

• n∑n
i=1

1
xi

≤ (
∏n

i=1 xi)
1
n ≤

∑n
i=1 xi

n ≤
√∑n

i=1 x
2
i

n

• Sum of interior angle in a polygon : 180(n− 2)
• Sum of external angle in a polygon : 360
• xn − 1 = (x− 1)

∑n−1
i=0 xi

• a3 + b3 = (a+ b)(a2 − ab+ b2), a3 − b3 = (a− b)(a2 + ab+ b2)
• (x+ y)n =

∑n
i=0

(
n
i

)
xn−iyi

• y = f(x), f−1(y) = x
• angles: zero, acute, right(90), obtuse, straight(180)

•
∑n

x=1 x
2 = n(n+1)(2n+1)

6

• surface of sphere: 4πr2, volume is 4
3πr

3
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2. Calculus-1

• Convergent sequence:
– Every convergent sequence is bounded
– A monotonic and bounded sequence is convergent

• limx→a f(x) exists ⇔ limx→a+ f(x) = limx→a− f(x) both exist
• continuous: f(a) = limx→a f(x)
• Extreme value theorem: function f is continuous in [a, b], f must attain a minimum and maximum value at
some point in the interval

• Intermediate value theorem: function f is continuous in [a, b], m is the minimum, M is the maximum, then
∀y ∈ [m,M ], ∃c ∈ [a, b], f(c) = y

• f ′(a) = limh→0
f(a+h)−f(a)

h
• If function is not continuous at a, it is not differentiable at a
• derivatives

– (ax)′ = (ln a)ax, (loga x)
′ = 1

x ln a

– (tanx)′ = sec2 x, (cotx)′ = − csc2 x
– (secx)′ = secx tanx, (cscx)′ = − cscx cotx
– (sin−1 x)′ = 1√

1−x2
, (cos−1 x)′ = − 1√

1−x2

– (tan−1 x)′ = 1
1+x2 , (cot

−1 x)′ = − 1
1+x2

– (sin / cos(ax+ b))(n) = an sin / cos(ax+ b+ nπ
2 )

– (ln(1 + x))(n) = (−1)n−1 (n−1)!
(1+x)n

– (u+ v)(n) =
∑n

i=1

(
n
i

)
u(n−i)v(i)

• y = f(x) → x = f−1(y)
• normal line’s slope ∗ tangent line’s slope = −1
• f ′ = 0 is a critical(stationary) point
• the points where the function has local extrema are critical points.
• inflection point is f ′′ changes sign
• n-th derivative test: find smallest n that f (n)(a) ̸= 0, if n is even, f (n)(a) > 0, f has a local minimum at a, if

f (n)(a) < 0, f has a local maximum at a. If n is odd, f has no minimum nor maximum at a
• Mean-Value theorem: function f, F is continuous in [a, b] and differentiable at every point in (a, b), ∀x ∈
(a, b), F (x) ̸= 0 ∃c ∈ (a, b), f ′(c)

F ′(c) =
f(b)−f(a)
F (b)−F (a) ; ∃c ∈ (a, b), f(b)− f(a) = f ′(c)(b− a);

• f(c) is a local extremum if it is a local minimum or maximum, f ′(c) = 0 or does not exists
• an absolute extremum will at c that f ′(c) = 0 or does not exists or at end point of the interval
• integration

–
∫
xndx = xn+1

n+1 ,
∫
axdx = ax

ln a

–
∫
tanxdx = − ln | cosx|,

∫
cotxdx = ln | sinx|

–
∫
secxdx =

∫ secx(secx+tanx)
secx+tanx dx =

∫
d secx+d tanx
secx+tanx = ln | secx+ tanx|

–
∫
secxdx =

∫ cos2 x
2
+sin2 x

2

cos2 x
2
−sin2 x

2

dx =
∫ 1+tan2 x

2

1−tan2 x
2
dx =

∫
(tanx+

(1−tan x
2
)2

1−tan2 x
2
)dx =

∫
(tanx+

1−tan x
2

1+tan x
2
)dx

=
∫
(tanx+

sin x
2
−cos x

2
sin x

2
+cos x

2
)dx =

∫
(tanx+

sin2 x
2
+cos2 x

2

(sin2 x
2
+cos2 x

2
)2
)dx =

∫
(tanx+ 1

1+sinx)dx = ln | secx+ tanx|

–
∫
cscxdx =

∫ cscx(cscx+cotx)
cscx+cotx dx =

∫ −d cotx−d cscx
cscx+cotx = − ln | cscx+ cotx| = ln | sinx

1−cosx | = ln | tan x
2 |

–
∫
cscxdx =

∫ sin2 x
2
+cos2 x

2
sin x

2
cos x

2
dx
2 =

∫
(tan x

2 + cot x
2 )d

x
2 = − ln | cos x

2 |+ ln | sin x
2 | = ln | tan x

2 |
–

∫
dx

x2−a2
= 1

2a ln |
x−a
x+a |,

∫
dx

x2+a2
= 1

a tan
−1 x

a

–
∫

dx√
a2−x2

= sin−1 x
a

–
∫

dx√
x2±a2

= ln |x+
√
x2 ± a2|

–
∫
udv = uv −

∫
vdu

–
√
a2 − x2 → x = a sin t,

√
x2 + a2 → x = a tan t,

√
x2 − a2 → x = a sec t

–
∫
x sinxdx = −

∫
xd(cosx) =

∫
cosxdx− x cosx = sinx− x cosx

–
∫
xexdx =

∫
xd(ex) = xex −

∫
exdx = (x− 1)ex

• Riemann sum:
∫ b
a f(x)dx = limn→∞

∑n
i=1 f(a+ b−a

n i) b−a
n

• Fundamental theorem for calculus:
∫ b
a f ′(x)dx = f(x)

∣∣b
a
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• Leibniz’s rule: d
dx

∫ b(x)
a(x) f(x, t)dt = f(x, b(x))b′(x)− f(x, a(x))a′(x) +

∫ b(x)
a(x)

∂f(x,t)
∂x dt

• Mean-Value theorem m(b− a) ≤
∫ b
a f(x)dx = f(c)(b− a) ≤ M(b− a)

• s =
∫ √

(dx)2 + (dy)2 =
∫ √

1 + y′dx

• ex ∼ 1 + x → e
1
x ∼ 1 + 1

x → e ∼ (1 + 1
x)

x

• L’Hospital’s rule: f, g are differentiable in interval I, f ′, g′ ̸= 0 exists, limx→a
f(a)
g(a) = limx→a

f ′(a)
g′(a)

• test for convergence of infinite series
–

∑
an converge ⇒ limn→∞ an = 0

– p-series
∑ 1

np converge for p > 1 and diverge for p ≤ 1, Harmonic series for p = 1
– 0 ≤ an ≤ bn,

∑
bn converge ⇒

∑
an converge,

∑
an diverge ⇒

∑
bn diverge

– nonnegative series, limn→∞
an+1

an
< 1 ⇒

∑
an converge, > 1 ⇒

∑
an diverge. = 1 no conclusion

– nonnegative section, limn→∞ a
1
n
n < 1 ⇒

∑
an converge, > 1 ⇒

∑
an diverge. = 1 no conclusion

– alternating series
∑

(−1)n+1an, an ≥ 0 converge if an decrease monotonically with 0 as limit
– every absolute convergent series converge

• radius of convergence for power series
∑

anx
n is limn→∞ | an

an+1
|

•
∫ x
0

∑∞
n=0 anx

n =
∑∞

n=0
an
n+1x

n+1

• d
dx

∑∞
n=0 anx

n =
∑∞

n=1 nanx
n−1

• Taylor series: f(x) =
∑∞

n=0
f (n)(a)

n! (x− a)n

– 1
1±x =

∑∞
n=0(∓x)n ∀x ∈ (−1, 1)

– ln(1 + x) =
∑∞

n=1
(−1)n+1

n xn ∼ x− x2

2 ∀x ∈ (−1, 1): notice the starting index is 1

– ex =
∑∞

n=0
xn

n! ∀x ∈ R
– sinx =

∑∞
n=0

(−1)n

(2n+1)!x
2n+1 ∼ x− x3

6 ∀x ∈ R
– cosx =

∑∞
n=0

(−1)n

(2n)! x
2n ∼ 1− x2

2 ∀x ∈ R
•
∫
x lnxdx = x2

2 lnx− x2

4

•
∫∞
0 e−x2

dx =
√
π
2
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3. Calculus-2

• x, y axes parition the plane into 4 quadrants, and x, y, z axes parition the space into 8 octants
• a · b = |a||b| cos θ, projab = a·b

a·aa

• a× b = |a||b| sin θ = −b× a =

∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣: useful for calculating area

• (a× b) · c =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
• c · (a+ b) = c · a+ c · b, c× (a+ b) = c× a+ c× b
• line in 3d: x−x0

v1
= y−y0

v3
= z−z0

v3
= t

• plane in 3d: (x− x0, y − y0, z − z0) · (n1, n2, n3) = 0 or n1x+ n2y + n3z + d = 0

• d = Ax0+By0+Cz0+D√
A2+B2+C2

• cylindrical coordinate: x = r cos θ, y = r sin θ, z = z
• spherical coordinate: x = r sinϕ cos θ, y = r sinϕ sin θ, z = r cosϕ
• Duf |P = ∇f |P · u
• ∇f = ∂f

∂x i+
∂f
∂y j +

∂f
∂z k points to the direction which f increases most rapidly

• F (x, y) = 0, ∂F
∂x dx+ ∂F

∂y dy = 0 dy
dx = −

∂F
∂x
∂F
∂y

= −Fx
Fy

• tangent plane: (x− x0, y − y0, z − z0) · (∂f∂x ,
∂f
∂y ,

∂f
∂z ) = 0

• P is a critical point of f(x, y) if ∂f
∂x

∣∣
P
= 0 and ∂f

∂y

∣∣
P
= 0

• second-derivative test: ∆ =

∣∣∣∣ fxx fxy
fyz fyy

∣∣∣∣ = fxxfyy − f2
xy

– ∆ > 0 and fxx < 0, local maximum
– ∆ > 0 and fxx > 0, local minimum
– ∆ < 0 saddle point
– ∆ = 0, no conclusion

• line integral:
∫
C fds =

∫ b
a f(x(t), y(t))

√
(dxdt )

2 + (dydt )
2dt

• F (x, y) = P (x, y)i+Q(x, y)j,
∫
C F · dr =

∫
C Pdx+Qdy

• Green theorem: a simple closed curve C enclosing a region R:
∮
C Pdx+Qdy =

∫∫
R(

∂Q
∂x − ∂P

∂y )dxdy

• Green theorem require P,Q are defined and have continuous partial derivatives both on C and throughout
the region R enclosed by C

• area of R = 1
2

∮
C xdy − ydx =

∮
C −ydx =

∮
C xdy

• Fundamental theorem of calculus for line integrals:
∫
C:A→B ∇f · dr = f(B)− f(A)

line integral of a gradient field depends only on the endpoints of the path(conservative field).

• F is a gradient field ⇔ ∀C :
∮
C Fdr = 0 ⇔ ∂Q

∂x = ∂P
∂y ⇔ ∃u, du = Pdx+Qdy

• Divergence theorem
∫∫∫

V ∇ · F⃗ dv =
∫∫

S F⃗ · ds⃗
• area of surface:

∫∫
ds =

∫∫ √
z2x + z2y + 1dxdy
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4. ODE

• Separable equation:
∫
f(x)dx =

∫
g(y)dy

• Homogeneous equation: dy
dx = f( yx)

Let y
x = t, dy

dx = t+ x dt
dx , x

dt
dx = f(t)− t,

∫
dt

f(t)−t =
∫

dx
x

• exact equation: ∂2f
∂x∂y = ∂2f

∂y∂x

• multiplying an integrating factor transform non-exact to exact ODE
• if a non-exact equation has a solution, an integrating factor exists.
P (x, y)dx+Q(x, y)dy = 0, ∂Q

∂x − ∂P
∂y ̸= 0

–
∂P
∂y

− ∂Q
∂x

Q = ϕ(x), then e
∫
ϕ(x)dx is a integrating factor.

–
∂P
∂y

− ∂Q
∂x

−P = Φ(y), then e
∫
Φ(y)dy is a integrating factor.

• first-order linear equation: df
dx + P (x)f = Q(x):

– u(x) = e
∫
P (x)dx

– u(x) dfdx + u(x)P (x)y = u(x)Q(x)
– (uf)′ = uQ
– f = 1

u

∫
uQdx

• y′′ = f(x, y′), let y′ = p, p′ = f(x, p)

• y′′ = f(y, y′), let y′ = p, y′′ = pdp
dy , p

dp
dy = f(y, p)

• second-order linear differential equation with constant coefficients
ay′′ + by′ + cy = d(x), homogeneous if d(x) = 0. y = yh + yp
auxiliary polynomial equation ax2 + bx+ c = 0

– 2 real roots, y = c1e
r1x + c2e

r2x

– 1 root, y = (c1 + c2x)e
rx

– r1,2 = α± iβ, y = eαx(c1 cosβx+ c2 sinβx)
• n-th order ODE will have n constants
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5. Linear Algebra

• each linear equation determines a hyperplane in n-dimensional space
• solution of linear system: a set of

∑n
i=1 aixi = 0

– homogeneous systems are always consistent(all 0 trivial solution)
– solution set to is the null space of the corresponding matrix A
– if |A| ̸= 0, only 1 sol

• solution of linear system: a set of
∑n

i=1 aixi = b
– no sols(inconsistent): rank(A) ̸= rank([A, b])
– 1 sol: rank(A) = rank([A, b]) = n
– infinite many sols: rank(A) = rank([A, b]) ≤ n: if there are 2 sols, then there are ∞
– non-homogeneous systems x = xh + xp

• Gaussian elimination via elementary row operation:
– multiply a row by a non zero const
– interchange two rows
– add a multiple of one row to another

•
(

a b
c d

)−1

= 1
ad−bc

(
d −b
−c a

)
• vector space: a set closed under addition and scalar multiplication
• every vector space must contain zero vector
• the set of all linear combinations of a set of vectors is their span
• a minimal spanning set for a vector space is a basis for the space, they are linearly independent
if
∑n

i=1 aixi = 0, then ai = 0
• The dimension or rank of a vector space is the size of its basis
• a subspace of R3 must be: {0}, a line through origin, a plane through origin or R3

• every permutation can be achieved by a sequence of transposition of two elements,
the sgn of a permutation σ is +1 is permutation is even or else −1

• |A| =
∑

σ∈Sn
sgn(σ)

∏n
i=1 aiσ(i)

– |a1, . . . , bi + ci, . . . , an| = |a1, . . . , bi, . . . , an|+ |a1, . . . , ci, . . . , an|
– |a1, . . . , kai, . . . , an| = k|a1, . . . , ai, . . . , an|
– |a1, . . . , ai . . . aj , . . . , an| = −|a1, . . . , aj . . . ai, . . . , an|
– |a1, . . . , ai . . . aj , . . . , an| = |a1, . . . , ai . . . kai + aj , . . . , an|
– |a1, . . . , kai . . . lai, . . . , an| = 0
– |AB| = |A||B|

• Laplace expansion: |A| =
∑n

j=1 aijcof(aij) =
∑n

j=1 aij(−1)i+j(aijminor)

• Crammer’s rule for square linear system: xi =
|Ai|
|A|

• linear transformation is a function between two vector spaces s.t. T (a+ b) = T (a) + T (b), T (ka) = kT (a)
• If two vector spaces are isomorphic, the mapping a linear transformation
• Vector spaces are isomorphic if and only if they have the same dimension
• linear transformation maps zero vector to zero vector
• linear operator is a linear transformation map a vector spaces to itself
• every linear transformation can be represented by a matrix
• T (x) = T (

∑n
i=1 kibi) =

∑n
i=1 kiT (bi)

• standard matrix for linear transformation: T (x) = Ax: col i is the image of ei
• change of basis matrix: [B][x]B = x
• Rank-nullity theorem: rank(T ) + nullity(T ) = dim(domain)

– nullity is the dimension of nullspace(kernel): ker(T ) = {x : T (x) = 0}
– rank is the dimension of range: R(T ) = {T (x) : ∀x}, the same as column space
– T (x) = Ax, T is one-to-one and onto, |A| ̸= 0, rank(A) = n, only zero vector is mapped to zero vector

• Ax = λx, |A− λI| = 0
• |A| =

∏
i λi, tr(A) =

∑
iAii =

∑
i λi

• Eigenspace Eλ(a) = {x : Ax = λx} is the nullspace of matrix A− λI
• Cayley-Hamilton theorem: any square matrix satisfies its own characteristic equation
if p(λ) = det(A− λI) is the characteristic polynomial of matrix A, then p(A) = 0

• n by n matrix A is diagonalizable iff A has n linearly independent eigenvectors
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6. Number theory and abstract algebra

6.1. Number theory.

• Z: int, Q: rational: reals of form a
b , a, b ∈ Z, b ̸= 0; R: real; C: complex

• a | b: b = ac, a divides b, b is divisible by a. a is a divisor or factor, b is a multiple of a
• 1 is not a prime
• an int p whose only divisors are 1 and p is a prime number, int that not prime is composite
• divisibility:

– 2: unit digit is 0, 2, 4, 6, 8
– 5: unit digit is 0, 5
– 3: sum of digits is divisible by 3
– 9: sum of digits is divisible by 9
– 4: last 2 digits is divisible by 4
– 8: last 3 digits is divisible by 8
– 6: divisible by 2, 3
– 7: no

• n is divisible by primes a ̸= b, n is divisible by ab
• relatively prime: two int have only common divisor 1
• division alg: a = bq + r : 0 ≤ r < a, q quotient, r remainder
gcd(bq + r, b) = gcd(b, r)

• |{p : prime p ≤ x}| ∼ x
lnx

• fundamental theorem of arithmetic: every int > 1 can be expressed as unique product of primes

• great common divisor(g.c.d): gcd(
∏n

i=1 p
ai
i ,

∏n
i=1 p

bi
i ) =

∏n
i=1 p

min(ai,bi)
i

• least common multiple(l.c.m): lcm(
∏n

i=1 p
ai
i ,

∏n
i=1 p

bi
i ) =

∏n
i=1 p

max(ai,bi)
i

• gcd(a, b) ∗ lcm(a, b) = ab
• linear Diophantine equation: ax+ by = c with int a, b, c

– gcd(a, b) - c, no int sol
– gcd(a, b) | c, infinite int sols: x = x0 +

b
gcd(a,b) t, y = y0 − a

gcd(a,b) t

– we can first write gcd as linear combination of a, b: ax0 + by0 = gcd(a, b)
– a cx0

gcd(a,b) + b cy0
gcd(a,b) = gcd(a, b) c

gcd(a,b) = c

– int sol for ax+ by = c: a( cx0
gcd(a,b) +

bt
gcd(a,b)) + b( cy0

gcd(a,b) −
at

gcd(a,b)) = gcd(a, b) c
gcd(a,b) = c

• a is congruent to b modulo n: n | a− b: a ≡ b(mod n)
– a ≡ b(mod n), b ≡ c(mod n), then a ≡ c(mod n)
– a ≡ b(mod n), ∀c, a± c ≡ b± c(mod n), ac ≡ bc(mod n)
– a1 ≡ b1(mod n), a2 ≡ b2(mod n), then a1 ± a2 ≡ b1 ± b2(mod n), a1a2 ≡ b1b2(mod n)
– a ≡ b(mod n), then a ≡ b, b+ n, . . . , b+ (c− 1)n(mod cn)
– ab ≡ ac(mod n), b ≡ c(mod n

gcd(a,n)). if gcd(a, n) = 1, b ≡ c(mod n)

• Fermat little theorem: p is a prime, a is int, if p - a, then ap−1 ≡ 1(mod p). ∀a : ap ≡ a(mod p)∏p−1
i=1 ai ≡

∏p−1
i=1 i(mod p)

• ax ≡ b(mod n), ax− nc = b has a sol for x, c if gcd(a, n) | b
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6.2. Abstract algebra.

• Mm×n(S): set of all matrices with entries in S
• Mn(S): set of all square matrices with entries in S
• S is a nonempty set, binary operation f : S × S → S
• Group

– semigroup: associative binary structure (S, ∗) : a ∗ (b ∗ c) = (a ∗ b) ∗ c
– identity: a ∗ e = e ∗ a = a
– monoid: semigroup with identity
– inverse: a ∗ a−1 = a−1 ∗ a = a
– group: monoid with inverse: close, assoc, id, inv: solve linear eq
– Abelian group: commutative group: a ∗ b = b ∗ a
– (Mm×n(S),+) are finite Abelian groups
– (GL(n,R),×): convertible(det ̸= 0) n× n matrices of reals
– (SL(n,R),×): convertible(det = 1) n× n matrices of reals
– ({z : zn = 1},×): n-th root of unity under multiplication
– (Sn, ◦): permutation under composition: not Abelian n ≥ 3, |Sn| = n!
– alternating groups |An| = n!

2 : even permutations
– (Dn, ◦): permutation of vertices of polygon Pn under composition: dihedral group: |Dn| = 2n

n rotations and n reflections: Dn = ⟨r, f | rn = f2 = (rf)2 = 1⟩
– Zn = [n− 1], a⊕ b = a+ b(mod n)

(Zn,⊕) is a order n Abelian group: additive group of ints modulo n
– a⊗ b = ab(mod n), (Zn,⊗) is an Abelian monoid: not every element have inv
– (Zp,⊗) is a order p− 1 Abelian group: multiplicative group of ints modulo p
– group table: every element appears once in every row and col

– cyclic group: {an : n = 0, 1, . . . } with generator a. They are Abelian. e.g.: (Zn,+)
– Every infinite cyclic group is isomorphic to the additive group of Z, ±1 are generators
– Every finite cyclic group of order n is isomorphic to the additive group of Zn,

Order of generator is relatively prime to n
– Every finite Abelian group is finitely generated
– Every finitely generated Abelian group is isomorphic to a direct sum

|G| =
r∏

i=1

pkii : G ≃ ⊕r
i=1Zp

ki
i

– Zm ⊕ Zn is cyclic ⇔ gcd(m,n) = 1, Zm ⊕ Zn ≃ Zmn

– A finite abelian group is also finitely generated, finitely generated Abelian group need not be finite

– generator for cyclic group does not have to be unique
– m is a generator for (Zn,⊕) ⇔ m relatively prime to n
– G is a cyclic group with generator a, n is smallest int s.t. an = e, then

m is a generator for G ⇔ m relatively prime to n
– smallest non-cyclic group: Klein four-group: K4 = ⟨a, b : a2 = b2 = e, ab = ba⟩
– order 4 groups: Klein four-group and cyclic 4 group are all Abelian
– subgroup (H, ∗) ≤ (G, ∗): close, id, inv

subgroup must contain id of the group
– center Z(G) = {z ∈ G : ∀g ∈ G : zg = gz} is a subgroup
– normal subgroup: N E G: ∀g ∈ G : gNg−1 = N
– a ∈ G, the smallest subgroup contains a is cyclic subgroup ⟨a⟩ = {an : n ∈ Z}

any group has a cyclic subgroup: ⟨a⟩ ≤ G
– order of group is the number of elements in the set.
– order of a ∈ G is the order of ⟨a⟩ i.e. smallest int n s.t. an = e
– a group that can be generated by a finite set is finitely generated
– some theorems:

∗ Lagrange theorem: if H is a subgroup of a finite group G: |H| | |G|
∗ The order of any element a of a finite group divides the order of that group
∗ G is a finite Abelian order n group, G has a least 1 subgroup of order of every positive divisor
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∗ G is a finite cyclic order n group, G has 1 subgroup of order of every positive divisor
∗ Cauchy theorem: G is a finite order n group, G has a least 1 subgroup of order prime p : p | n
∗ Sylow first theorem: G is a order n = pkm group, G has at least 1 subgroup of order pi : i ∈ [k]

– (G1, ∗1), (G2, ∗2) are groups, direct product (G1 ×G2, ∗): |G1 ×G2| = |G1||G2|
G1 ×G2 = {(a, b) : a ∈ G1, b ∈ G2}, (a1, a2) ∗ (b1, b2) = (a1 ∗1 b1, a2 ∗2 b2)

– Zm ⊕ Zn is cyclic ⇔ gcd(m,n) = 1; Zm ⊕ Zn ≃ Zmn

– homomorphism: (G1, ∗1) ≃ (G2, ∗2) if there’s a function f : f(a ∗1 b) = f(a) ∗2 f(b)
∗ f(e1) = e2
∗ order of g ∈ G1 = order of f(g) ∈ G2

∗ f(a−1) = (f(a))−1

∗ H ≤ G1, {f(h) : h ∈ H} = f(H) ≤ G2

∗ H ≤ G2, {f−1(h) : h ∈ H} = f−1(H) ≤ G1

∗ |f(G1)| | |G1|, |f(G1)| | |G2|
∗ zero map is always a homomorphism
∗ trivial homomorphism: every elements mapped to e2

– monomorphism: homomorphism and injection ⇔ ker(f) = {g ∈ G : f(g) = e′} = e
– epimorphism: homomorphism and surjection
– isomorphism: homomorphism and bijection

infinite group (Z,+) is isomorphic to one of its proper subgroups (nZ,+), n ≥ 2, n ∈ Z
– endomorphism: homomorphism to itself
– automorphism: isomorphism to itself
– kernel of a homomorphism is always a subgroup, thus |ker(G)| | |G|

f : Zp → G, |ker(f)| = 1 or p, trivial homomorphism or monomorphism
• Ring

– (R,+, ∗) is a ring if: (R,+) is a Abelian group, (R, ∗) is a semigroup
Distributive property : a ∗ (b+ c) = a ∗ b+ a ∗ c, (b+ c) ∗ a = b ∗ a+ c ∗ a

– if ring has ≥ 2 elements, 0 ̸= 1
– ring with unity: ring has ∗ id. Commutative ring 2Z does not contains 1
– commutative ring: (R, ∗) is commutative

–

(
2a 2b
2c 2d

)
is not commutative and contains no id

– charR: smallest int n : ∀a ∈ R,na = 0; sufficient to check n ∗ 1 = 0
– ring of int modulo n: (Zn,+, ∗)
– (Mn(R),+, ∗) is a noncommutative ring with unity
– ring of Gaussian int: Z[i] = {a+ bi : a, b ∈ Z}

commutative ring with unity, but not every nonzero element has a inv
– real polynomials: R[x] = {

∑n
i=0 rix

i : ri ∈ R}: commutative ring with unity
– homomorphism: (G1,+1, ∗1) ≃ (G2,+2, ∗2) if there’s a function

f : f(a+1 b) = f(a) +2 f(b), f(a ∗1 b) = f(a) ∗2 f(b)
– ker(f) = {a ∈ R : f(a) = 0′}
– image: f(R) = {f(r) : r ∈ R}
– f(0) = 0′

– only 2 endomorphism for Z: zero homomorphism, id
– I is a subring for R, ∀r ∈ R, x ∈ I : rx ∈ I, xr ∈ I, I is an ideal
– integral domain: commutative ring with unity s.t. ab = 0 ⇔ a = 0 or b = 0. Cancellation property.
– nonzero a, b in the ring, ab = 0, a is left zero divisor, b is right zero divisor
– cancellation law of integral domain: a ̸= 0, ab = ac → b = c
– nonzero m ∈ Z is a zero divisor ⇔ m and n are not relatively prime
– Zp is a integral domain

• Field
– a set of elements with commutative +,−, ∗, /
– (F,+), (F ⋆, ∗) are Abelian groups

Distributive property : a ∗ (b+ c) = a ∗ b+ a ∗ c, (b+ c) ∗ a = b ∗ a+ c ∗ a
– an element in ring with unity is a unit if it is invertible (1 is always a unit)
– m is a unit of Zn iff m is relative prime to n
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– group of units: units of a ring with unity form a group under ∗, it never contains the element 0, is there-
fore not closed under addition

– division ring: (R⋆, ∗) is a group: R is a ring with unity and every nonzero element is a unit
– a commutative division ring is a field: commutative ring with unity and every nonzero element is a unit
– finite integral domain is a field: Zp is a field ⇔ p is a prime, it containing p− 1 units
– Q = {a

b : a, b ∈ Z, b ̸= 0}: field of rationals
• group: +,−; ring: +,−, ∗; field: +,−, ∗, /
• vector spaces are Abelian groups under + with a field of scalars
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7. Additional

7.1. Logic.

• A ∧B = A ∨B
• A ∨B = A ∧B
• Contraposition: A → B ⇔ B → A
• p → q ≡ p ∨ q

7.2. Set theory.

• set is a collection of elements
• A ⊆ B,A ⊇ B ⇒ A = B
• A = {x ∈ U : x ̸∈ A}
• A△B = (A \B) ∪ (B \A) = (A ∪B) \ (A ∩B)
• a set S is finite if there is a bijective function between [n] and S (equivalent)
• if a set is equivalent to Z+, then it is countably infinite, whose cardinality is ℵ0

• R is equivalent to the power set of Z+: cardinality of the continuum: |R| = 2ℵ0 > ℵ0

7.3. Graph theory.

• a graph is a collection of vertices and edges
• the order of graph is |V |, the size of graph is |E|
• odd/even vertex: a vertex with odd/even degree
• isomorphic: graph F,G are isomorphic if there is a bijective function f : V (F ) → V (G) preserving adjacencies
• connected: every pair of vertices can be connected by a path
• forest: a graph with no cycles, a connected forest is a tree
• subgraph: H is a subgraph of G if V (H) ⊆ V (G), E(H) ⊆ E(G), every edge in H connect 2 vertices of H
• subgraph H is a spanning subgraph of G if V (H) = V (G); if H is a tree, it is called spanning tree
• Walk: Vertices may repeat. Edges may repeat (Closed or Open)
• Trail: Vertices may repeat. Edges cannot repeat (Open)
• Circuit: Vertices may repeat. Edges cannot repeat (Closed)
• Path: Vertices cannot repeat. Edges cannot repeat (Open)
• Cycle: Vertices cannot repeat. Edges cannot repeat (Closed)

7.4. Algorithms.

• no instructions can be dependent on user
• process must end with a sol after finite number of steps
• the process is deterministic

7.5. Combinatoric.

• k-permutations of n: P (n, k) = n!
(n−k)!

• k-combinations of n: C(n, k) =
(
n
k

)
= n!

k!(n−k)!

• k-permutations of n with repetition: P (n, k) with repetition = nk

• k-combinations of n with repetition
– k balls into n urns: k balls add n− 1 dividers
– sol number of x1 + · · ·+ xn = k, xi ≥ 0
– k is total number of samples, xi counts times of sampled i

– C(n, k) with repetition =
(n+(k−1)

k

)
=

(
k+(n−1)

n−1

)
= (k+n−1)!

k!(n−1)!

• Pigeonhole principle: if n = km+ 1 balls into m bins, at least 1 bin contain at least k + 1 objects
k + 1 = ⌊n−1

m ⌋+ 1 = ⌈ n
m⌉

7.6. Probability and statistic.

• cards
– face cards: jacks, queens, and kings
– clubs, diamonds, hearts and spades

• a Boolean algebra E of sets on S is a nonempty subfamily of power set of S: E ⊆ P (S) s.t.
– A,B ∈ E → A ∩B,A ∪B ∈ E
– A ∈ E → A ∈ E

• a probability measure on E is a function P : E → [0, 1], s.t.
– P (∅) = 0
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– P (S) = 1
– P (A ∪B) = P (A) + P (B) for disjoint sets A,B ∈ E

• probability space: sample space S of outcomes, event space E of events and probability measure P
• events are subsets of sample space
• Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B)
• independent: Pr(A ∩B) = Pr(A) Pr(B)
• exclusive: Pr(A ∪B) = Pr(A) + Pr(B) or Pr(A ∩B) = 0
• Bernoulli trials are independent success or failure events
Pr(k successes) =

(
n
k

)
pk(1− p)n−k

• a random variable is a function X : S → R assigning outcomes to real numbers
distribution function of X: FX(t) = P ({ω : X(ω) ≤ t})
probability density function of X: fX(t) = d

dtFX(t)

• EX =
∫
xp(x)dx, VarX = EX2 − (EX)2, std: σ(X) =

√
VarX

• Gaussian distribution: X ∼ N (µ, σ2) = 1√
2πσ2

e
(x−µ)2

2σ2

Φ(−z) = 1− Φ(z)
• Φ(0.5) = 0.69, Φ(1) = 0.84, Φ(1.5) = 0.93, Φ(2) = 0.97, Φ(2.5) = 0.99, Φ(3) ∼ 1

• standard normal distribution: Z ∼ 1√
2π
e

x2

2 ; Φ(z) =
∫ z
−∞

1√
2π
e

x2

2 dx

• normal approximation to binomial distribution:

Pr(a ≤ X ≤ b) =
∑b

k=a

(
n
k

)
pk(1− p)n−k ∼ Φ( b−np√

npq )− Φ(a−np√
npq )

• Poisson approximation to binomial distribution:
(
n
k

)
pk(1− p)n−k ∼ e−np (np)

k

k!
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7.7. Point Set topology.

• X is a nonempty set, a topology T ⊆ 2X on X is a set of subsets of X s.t.
– ∅, X ∈ T
– close under arbitrary union
– close under finite intersection

• members in T are open sets (including empty set), complement of open sets are closed set
• topological space: (X,T ):
{∅, X} is trivial topological space (coarsest). power set 2X is the discrete topology (finest)

• O is open if ∀x ∈ O, ∃ϵ > 0, {x′ : |x− x′| < ϵ} ⊆ O, it doesn’t contain any of its boundary points
• closed set is a set which contains all its limit points
• collection of open sets is a topology on R
• subspace topology: given a topological space (X,T ), a subset S ⊆ 2X is open in X
if S ⊇ U = O ∩ S, where O is open in X

– interior int(A): the largest open set contained in A, i.e. int(A) = A \ bd(A)
– exterior ext(A): union of all open sets do not intersect A, i.e. int(A)
– boundary bd(A): a set of all point x s.t. every open set containing x intersects A and A
– limit point of A: a point x s.t. every open set containing x also contains at least one point of A other

than x
– derived set A′: the set of all limit points of A
– closure cl(A): int(A) ∪ bd(A) = A ∪A′

– closure cl(A) is the smallest closed set containing A
– A is closed ⇔ it contains all boundary points and limit points
– boundary points are not necessarily limit points: isolated points

A = (0, 1) ∪ (1, 2)

int(A) = A, ext(A) = (−∞, 0) ∪ (2,∞), bd(A) = [0, 1, 2], A′ = [0, 2], cl(A) = [0, 2]

int(Z) = Z, ext(Z) = ∪n∈Z(n− 1, n), bd(Z) = Z,Z′ = ∅, cl(Z) = Z
– The interior, boundary, and exterior of a set together partition the whole space
– The interior and exterior are always open while the boundary is always closed
– Every point of a set is either an interior point or a boundary point
– Isolated points are always boundary points
– (0, 1] is neither close nor open because it contains only part of boundary
– Q and R \Q are neither close nor open, they are dense and disjoint

int(Q) = int(R \Q) = ∅, cl(Q) = cl(R \Q) = R, bd(Q) = bd(R \Q) = R
– empty, R are both open and closed

• basis B is a collection of subsets of X s.t
– ∀x ∈ X, ∃B ∈ B : x ∈ B
– B1, B2 ∈ B, x ∈ B1 ∩B2, ∃B3 ∈ B : x ∈ B3 ⊆ B1 ∩B2

• B = {(a, b) ∈ R : a < b} of all open intervals is a basis for standard topology on R
• B = {[a, b) : a, b ∈ R, a < b} is a basis for low-limit topology on R
• product topology: a topology on Cartesian product of sets: B = {OX ×OY : OX ∈ TX , OY ∈ TY }
• disconnected: there exists disjoint, nonempty open set O1, O2 : O1 ∪O2 = X

– A,B are connected and intersect, union is connected
– A is connected, B : A ⊆ B ⊆ cl(A) is connected
– Cartesian product of connected spaces is connected
– x1, x2 are path-connected: ∃ continuous f : [0, 1] → X, f(0) = x1, f(1) = x2
– any path-connected space is connected
– the intervals are the only connected subspaces of R

• A subset A of Rn is said to be bounded if it is contained in some open rectangle
• a covering of X is a collection of subsets whose union is X, if subsets are open set, it is open covering
• compact space: every open covering of X contains a finite subcollection that covers X

– R is not compact because no finite subcollection of {(n− 1, n+ 1) : n ∈ Z} covers R
– trivial topology is compact
– (0, 1) is not compact: A = {( 1n , 1−

1
n) : n = 3, 4, . . . )}
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– [0, 1] is compact
– X is compact topological space, closed subset S ⊆ X is compact
– Compact subsets of Hausdorff space are closed.
– Cartesian product of compact spaces is compact

• Heine-Borel theorem: a subset of Rn is compact ⇔ it is closed and bounded (the norm of every point is less
than certain real)

• X is nonempty set, d : X ×X → R is a metric on X if
– d(x, y) = d(y, x)
– d(x, y) ≥ 0, d(x, x) = 0
– d(x, y) ≤ d(x, z) + d(z, y)

• metric space (X, d)
• ε-ball: Bd(x, ε) = {x′ ∈ X : d(x, x′) < ε}
• metric topology induced by d: topology for metric space generated by collection of all ε-balls:
B = {Bd(x, ε) : x ∈ X, ε > 0}

• open set O is open ⇔ ∀x ∈ O, x is contained in some ε-ball contained in O, i.e.
∀x ∈ O, ∃εx, Bd(x, εx) ⊆ O

• (X1, d1), (X2, d2) are metric spaces, f : X1 → X2 is continuous at x0 if
∀ε > 0, ∃δ : d1(x, x0) < ε → d2(f(x), f(x0)) < δ, i.e.
∀O ⊆ X2 : f(x0) ∈ O, inverse image f−1(O) is an open set containing x0

• (X1, T1), (X2, T2) are topological spaces, f : X1 → X2 is continuous if ∀O ∈ T2, inverse image f−1(O) ∈ T1

• given a continuous function between topological spaces (X1, T1), (X2, T2)
– f−1(C) is closed in X1 for every closed subset C ⊂ X2 ⇔ f is continuous
– C ⊆ X1 is connected, f(C) is a connected subset in X2

– C ⊆ X1 is compact, f(C) is a compact subset in X2

• open map: image of open set is open
• homeomorphism: f is bijective, f and f−1 are continuous
one-to-one correspondence between X1 and X2 and open sets, they are topologically identical

• Hausdorff space: every pair of distinct points x, y ∈ X, there exists disjoint open set O1, O2 : x ∈ O1, y ∈ O2

• Compact Hausdorff space: f is a bijective, continuous map of topological spaces, X1 is compact and X2 is
Hausdorff, then f is homeomorphism(f−1 is continuous)

• Every subspace of a Hausdorff space is a Hausdorff space
• Compact sets in Hausdorff spaces are always closed



16 ZHANG, RUI

7.8. Real analysis.

• a lower bound of a set of reals X is a number a s.t. ∀x ∈ X, a ≤ x, infX is the greatest lower bound
• a upper bound of a set of reals X is a number a s.t. ∀x ∈ X, a ≥ x, supX is the least upper bound
• least upper bound axiom: if a set of reals has an upper bound, then there’s exactly one supremum
• every sequence of reals want to converge can find a real to converge to
• a sequence of reals xi is a Cauchy sequence if ∀ε, ∃N ∈ Z, ∀m,n ≥ N, |xm − xn| < ε
• convergent implies Cauchy, Cauchy implies convergent only if metric space is complete:
every Cauchy sequence of reals converges

• a metric space in which every Cauchy sequence converges is a complete space(contains limits)
• Lebesgue measurable set: M ⊆ R is Lebesgue measurable ⇔ ∀A ⊆ R : µ⋆(A) = µ⋆(A∩M)+µ⋆(A∩M), with
µ⋆(A) = inf{

∑∞
i=1(bi − ai) : A ⊂ ∪∞

i=1(ai, bi)}
– a measurable set M with µ(M) = 0 is a set of measure zero, singleton set has zero measure
– finite or countably infinite sets has measure zero: µ(Z) = 0, µ(Q) = 0

∀k ∈ Z+ : ak ∈ (ak − ε
2k+1 , ak +

ε
2k+1 ), µ({ak}∞k=1) =

∑∞
k=1

ε
2k

= ε
– every open, close set in R is measurable
– every finite or countably infinite subset of R is measurable
– complement of a measurable set is measurable
– a finite or countably infinite union or intersection of measurable sets are measurable
– µ((a, b)) = µ((a, b]) = µ([a, b)) = µ([a, b]) = b− a
– M1 ⊆ M2 → µ(M1) ≤ µ(M2)

• Lebesgue measurable function: ∀ open set O ⊆ R, the inverse image f−1(O) is a Lebesgue measurable set
– every continuous function is measurable
– sum, difference and product of measurable functions are measurable

• characteristic function of A ⊆ R: χA(x) = 1 if x ∈ A, 0 if x ̸∈ A is measurable ↔ A is a measurable set
• step function: a finite, linear combination (with real coefficients) of characteristic functions: s(x) =

∑n
i=1 aiχA(x)

• if f is measurable, there exists a sequence of step functions with limit being f
• step function s =

∑n
i=1 aiχA is Lebesgue integrable if ai ̸= 0 → µ(Ai) < ∞∫

sdµ =
∑n

i=1 aiµ(Ai)
• if every step function s, s ≥ 0, s ≤ f is integrable and

∫
sdµ is finite

f is Lebesgue integrable:
∫
fdµ = sups:s≤f

∫
sdµ

• arbitrary measurable function f is Lebesgue integrable if f+ = |f |+f
2 and f− = |f |−f

2 are Lebesgue integrable∫
fdµ =

∫
f+dµ−

∫
f−dµ

• Lebesgue integral: split the domain of f into subintervals Ri and form step functions s =
∑

i aiχf−1(Ri) to

approach f , f−1(Ri) is a measurable set
• For f(x) = 1{x ∈ Q}:

– {x : f(x) ̸= 0} has measure 0
– Lebesgue integrable, not Riemann integrable
– discontinuous and nondifferentiable everywhere

7.9. Complex analysis.

• complex numbers C is the set of all ordered pairs of reals (x, y) with + and × with identity (0, 0) and (1, 0)
• |z|2 = zz
• principal argument of z: Argz ∈ (−π, π)
• z = r(cos θ + i sin θ)
• (eix)n = (cosx+ i sinx)n = cosnx+ i sinnx

• n-th root of unity: zn = 1: ei
2πk
n

• principal log: Logz = log |z|+ iArgz
• eiπ + 1 = 0
• principal value of zw is ewLogz

• cosx = eix+e−ix

2 , sinx = eix−e−ix

2
• cos z and sin z are unbounded
• Cauchy-Riemann equations ∂u

∂x = ∂v
∂y ,

∂u
∂y + ∂v

∂x = 0

• function is harmonic in some open set O if Laplace equation is satisfied ∂2u
∂x2 + ∂2v

∂y2
= 0

• if f(z) is differentiable in open set O, it is harmonic in O
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• if f(z) is differentiable at z0, and at every point in some open set containing z0, it is analytic at z0
this means that f can be differentiable at infinite points, it is analytic nowhere

• if f(z) is differentiable in open set O, it is analytic in O
• derivatives of all orders of a analytic function is analytic
• Cauchy theorem: f is analytic in a simply connected open set D, for any closed path C in D:

∮
C f(z)dz = 0

• Morera’s theorem is the converse of Cauchy theorem
•
∮
C

dz
z−a = 2πi,

∮
C

dz
(z−a)n = 0

• Cauchy integral formula: if f is analytic at all points within and on a simple closed path surround z0:

f(z0) =
1

2πi

∮
C

f(z)
z−z0

dz, f (n)(z0) =
n!
2πi

∮
C

f(z)
(z−z0)n+1dz

• Liouville theorem: if f(z) is an entire function (analytic everywhere in complex plane) that’s bounded, f must
be a constant function

• if f is analytic and not a constant in an open connected subset O, |f | has no maximum in O; if O is bounded,
|f | achieve a maximum in cl(O).
maximum value is attained at some boundary points

• Taylor series: z0 is a point in disk of convergence with R = 1

limn→∞ |an|
1
n

in a analytic open set O:

f(z) =
∑∞

n=0
f (n)(z0)

n! (z − z0)
n

• f is analytic in a punctured open disk 0 < |z − z0| < R, z0 is the isolated singularity of f

• z0 is a pole of order n: f(z) = g(z)
(z−z0)n

• f is analytic in annulus: R1 < |z − z0| < R2, then f can be expanded into Laurent series:∑∞
n=1 a−n(z − z0)

−n +
∑∞

n=1 an(z − z0)
n

an = f (n)(z0)
n! = 1

2πi

∮
C

f(z)
(z−z0)n+1dz,

singular part / Laurent coefficients a−n = 1
2πi

∮
C

f(z)
(z−z0)−n+1dz,

C is a simple closed positively oriented curve in annulus
• if a−n = 0 for n > k, z0 is a pole of order k, singular part contains infinite terms, essential singularity
• a−1 =

1
2πi

∮
C f(z)dz is the residue of f at z0

• Res(z0, f) =
1

(k−1)! limz→z0
dk−1

dzk−1 [(z − z0)
kf(z)]

• residue theorem:
∮
C f(z)dz = 2πi

∑
iRes(zi, f)

7.10. Numerical analysis.

• Bisection method
• Newton’s method: find zeros of real-value function:
f(xn+1) ∼ f(xn) + f ′(xn)(xn+1 − xn) = 0 → xn+1 = xn − f(xn)

f ′(xn)
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8. Tricks and classic problems

8.1. Combinatoric and probability.

• Two players, A and B, alternately and independently flip a coin and the first player to get a head wins.
Assume player A flips first. If the coin is fair, what is the probability that A wins? 1

2p+
1
2(1− p) = p, p = 2

3

A wins probability
∑∞

k=0
1

22k+1 = 1
2
4
3 = 2

3
• Tossing coin and drawing dice alternately, Pr(H before 5 or 6)?
winning cases are H before 5, 6: (T, not 56), (T, not 56), ... H. Pr = 1

2

∑∞
i=0(

1
2
2
3)

i = 1
2

1
1− 1

3

= 3
4

• Fair coins are tossed and when either four consecutive heads and tails appear the process will be stopped.
What is the probability of two consecutive head or tail or any one of them in a row?
Transient states are H, T, TT, TTT; Absorbing states are HH, TTTT

• Fair coins are tossed and when HHH or THH appear the process will be stopped. What is the probability
that you get HHH before THH?
Transient states are H, T, HH, TH; Absorbing states are HHH, THH
Simple idea: for every HHH, last two HH has to appear, and it matches last two H of THH, so that the first
has to be H, or else it will be THH. 1

8
• Derangement: fix-point-free permutation. D(n) = (n− 1)[D(n− 1) +D(n− 2)]

• n lines separate the space into 1 + n(n+1)
2 parts

• sum of degree of all the vertices of a graph is even

8.2. Linear Algebra.

• A,B are subspaces of a vector space V , A ∩B is a subspace of V , A ∪B is not necessarily a subspace.
• number of invertible n× n matrices in GLn(F ), |F | = p:

∏n
i=1(q

n − qn−i). For n = 2, q4 − q3 − q2 + q
• When the vector space is finite-dimensional, the automorphism group of V is the same as the general linear
group, GL(V ), dimension is n2

• tr(AB) = tr(BA) ̸= tr(A)tr(B)
• tr(Ak) =

∑
λk
i

• Notice that tr(A2) can be negative, A =

(
0 −1
1 0

)
, A2 =

(
−1 0
0 −1

)
. tr(A2) ≥ 0 if the eigenvalues are

real
• number of invertible n× n matrices in GLn(F ), |F | = p:

∏n
i=1(q

n − qn−i). For n = 2, q4 − q3 − q2 + q
• Idempotent matrix: A2 = A. An idempotent matrix is always diagonalizable and its eigenvalues are either 0 or 1
a square invertible idempotent matrix is the identity matrix

• matrices can be diagonalizable but not invertible, invertible but not diagonalizable
• linear space {0} does not have a basis, it is not a linearly independent set, it has dimension 0
• A set containing a zero vector is linearly dependent, a basis cannot contain zero vector
• product of upper/lower triangular matrix is still upper/lower triangular matrix

•
(

1 1
0 1

)n

=

(
1 n
0 1

)
• A =

(
0 1
1 0

)
, A2 = I: etA =

∑∞
i=0

tiAi

i! = (
∑∞

i=0
t2i

(2i)!)I + (
∑∞

i=0
t2i+1

(2i+1)!)A

• rk

 1 2 3
4 5 6
7 8 9

 = 2

• dimension of n by n symmetric matrix is n(n+1)
2

• The set of all such polynomials of degree ≤ n is denoted Pn, it is a vector space, isomorphic to Rn+1

• n by n matrices A and B are similar if B = P−1AP , P is some invertible matrix. They represent the same
linear operator with respect to different bases. They have the same eigenvalues, thus the same trace and det

• orthogonality Q′ = Q−1 is a more restrictive criterion than linear independence, basis are not necessarily
orthogonal, determinant and eigenvalues are all +1

• Orthogonal matrices preserve the dot product: u · v = Qu ·Qv = (Qu)′Qu = u′v
• elementary row operations are invertible, A square matrix A is invertible if and only if it can be written as
the product of elementary matrices

• eigenvalues of triangular matrices are the elements of the main diagonal
• nilpotent matrix is a square matrix A such that Ak = 0, only eigenvalue is 0
• Every singular matrix can be written as a product of nilpotent matrices
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• (I −A)k = 0, A is invertible. (I −A)x = 0x, (I −A− I)x = (0− 1)x = −x = −Ax, Ax = x

8.3. Abstract algebra and Number theory.

• some primes: 2 3 5 7 11 13 17 19 23 29
• 100! ends with how many consecutive 0?
since 100! = c2p5q : p > q, we need to count number of factor 5. 100 = 5 ∗ 20 = 25 ∗ 4, q = 24
More general: k! will have

∑∞
i=1⌊

k
5i
⌋ 0 at end. 400 has 99 0 at end

• 11100 − 1 ends with how many consecutive 0?(
100
i

)
10i − 1 = 100 ∗ 10 + 100∗99

2 ∗ 100 + 100∗99∗98
3∗2 ∗ 1000 + . . . . 3

• solutions of x12 − x10 = 2 in field Z11

x12 − x10 = x10(x2 − 1) ≡ 2(mod 11), from Fermat little theorem: x10 ≡ 1(mod 11), x2 ≡ 3(mod 11), x = 5, 6
• how many non-isomorphic Abelian groups are there of order p2q4, gcd(p, q) = 1
Since every finite Abelian group is finitely generated. Elementary divisors for p2q4:
p2: 1(p2) + 1(p ∗ p), q4: 1(q ∗ q ∗ q ∗ q) + 1(q ∗ q ∗ q2) + 2(q ∗ q3, q2 ∗ q2) + 1(q4). 10

• Any finite group G of even order contains an element of order 2

∃a ∈ G : a2 = e. Contradiction: ∀a ∈ G : a−1 ̸= a, cardinality of G \ e will be even, which is false.
• All groups of prime order p are cyclic
From the Lagrange theorem, order of subgroup has to be p, expect for {e}, thus the order of cyclic subgroup
generated by any element is p, thus G can be generated by any element in the group

• There are at least two non-isomorphic groups of even order greater than 2: cyclic and dihedral
• Subgroups of Z are of form nZ for some n ∈ Z
A proper subgroup of Z is the set of integral multiples of some nonnegative int other than 1

• homomorphism f for a cyclic group is determined by f(1)
• homomorphism f : G → H, x ∈ G, order of x divides order of f(x)
• the number of group homomorphisms f : Zm → Zn is gcd(m,n)
• ∀a, b, c ∈ R : a+ b 3

√
2 + c 3

√
4 is a field

• A complement of subgroup is not a subgroup since it does not contain the identity.
• Irrationals are not closed under addition or multiplication.

√
2
√
2 = 2, (1−

√
2) +

√
2 = 1

• a, b has finite order in group G: am = bn = e
– ab = ba → ab has finite order: (ab)mn = amnbmn

– ab has finite order → ba has finite order: (ba)k+1 = b(ab)ka = ba
– ab has finite order → a−1b−1 has finite order: a−1b−1 = (ba)−1, from 2, (ba)k = e, a−1b−1 has the same

order
• The composition of functions is always associative, thus form a semigroup
• G is a group of exactly one non trivial proper subgroup, then G is cyclic and order is p2

• a ring with x2 = x.
– x+ x = (x+ x)2 = 4x2 = 2(x+ x) → x+ x = 0
– s+ t = (s+ t)2 = s2 + st+ ts+ t2 = s+ st+ ts+ t → st+ ts = 0 → st = ts

• 10n ≡ 4(mod 6) : n ≥ 1

• 1010
10 ≡ 4(mod 7): 106k ≡ 1(mod 7), 1010 ≡ 4(mod 6), thus 1010

10
(mod 7) ≡ 104(mod 7)

• product of two consecutive even numbers is always divisible by 8
• p2 − 1 is divisible by 24. For p− 1, p, p+ 1, they are divisible by 2, 3, 4

• p4 − 1 is divisible by 240, by Fermat, p4 ≡ 1(mod 5), p4 − 1 = (p − 1)(p + 1)(p2 + 1), they are even, one of
p− 1, p+ 1 is divisible by 4, it is divisible by 16, p2 − 1 is divisible by 3, 240

• The kernel of a homomorphism is a normal subgroup
• All groups less with order less than 6 are cyclic
This is because 2, 3, and 5 are prime. By Lagrange’s Theorem, any element that is not the identity in these
groups must have an order that is the same as the group’s order. This means that all groups of order 2, 3
and 5 are cyclic.

• the smallest non-Abelian group is the dihedral group of order 6
• a subgroup of a finitely generated group need not be finitely generated
• Abelian group, gcd(|a|, |b|) = 1, |ab| = |a||b|
• Subset S is a generating set of G if ∀g ∈ G : g = xa11 . . . xann , xi ∈ S, ai ∈ Z
• G is generated by a, b, |a| = 16, a2 = b3, |G| =?

∀k ∈ {0, . . . , 7} : anbm = a(n+2k)mod 16b(m−3k)mod 24. 16∗24
8 = 48
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• R is a ring, additive subgroup I is a right ideal if ∀r ∈ R, ∀i ∈ I : ir ∈ I
{0} and R are ideals in every ring R. If R is a division ring or a field, then these are its only ideals

• Conjugacy class: two elements a, b ∈ G are conjugate, if there exists an element g ∈ G : gag−1 = b, it is an
equivalence relation, if x ∈ G commute with everything, clG(x) = {x}, clG(e) = {e}

• Every element of Sn can be written as the product of disjoint cycles
• σ1, σ2 ∈ Sn are conjugate iff they have the same cycle decomposition. The number of conjugacy classes in Sn

equals the partition of n.
For S4: (4), (3)(1), (2)(2), (1)(1)(2), (1)(1)(1)(1)(1)

• The order of the product of disjoint cycles is the least common multiple of the orders of those cycles
• generator of group of units of ring Z17, since 17 is a prime, elements from 1 to 16 are all units, they form a
group under multiplication, the order is 16,

• P is a prime ideal for commutative ring R if a, b ∈ R : ab ∈ P , then a ∈ P or b ∈ P , and P is not R

8.4. Analysis and Topology.

•
∑∞

i=2
1

n lnn does not converge because
∫∞
2

dx
x lnx =

∫∞
2

d(lnx)
lnx = ln lnx

∣∣∞
2

= ∞
• f(x) = x− [x]

• f : [a, b] → R, if ∀x, y ∈ [a, b] : |f(x)− f(y)| ≤ (x− y)2, then f is a constant

|f ′(x)| = limx→y |f(x)−f(y)
x−y | ≤ limx→y

(x−y)2

|x−y| = limx→y |x− y| = 0

• g = x3 + x2 + x+ 1, f = 1
g−1(x)

, f−1(−2) =?

−2 = 1
g−1(x)

→ g−1(x) = −1
2 → g(−1

2) =
5
8

• The only periodic polynomials are constants

• xx
xx

...

= 2, x =? 2 = xx
xx

...

= x2, x =
√
2

• Independently at random choose x, y, z ∈ [0, 1], Pr(x ≥ yz)?∫ 1
0

∫ 1
0 (1− yz)dydx = 3

4
• Rademacher’s theorem: every Lipschitz function is almost everywhere differentiable:
undifferentiable points form a set of Lebesgue measure zero

• If two lines intersect at right angles, they are by definition perpendicular.
• x|x| is differentiable everywhere!

• Res(z0, f) = 1,
∫
Γ f(z)dz = 4πi

• reals form an uncountable set, of which the rationals are a countable subset, the complementary set of
irrationals is uncountable

• Harmonic series: Hn := 1 + 1
2 + · · ·+ 1

n , lnn+ 1
n < Hn < lnn+ 1

• limn→∞
1
n + 1

2+n + · · ·+ 1
3n = 1

2(H3n −Hn) =
1
2 ln

3n
n = 1

2 ln 3

• ∀x ≥ 1 : f(x)
x = f(1)

x +
∫ x
1 f ′(t)dt

x
• Two points are randomly placed on a line of length 1. What is the probability that the three segments created
could form a triangle?
(x, y, 1− x− y), x+ y < 1, x+ y < 0.5, x < 0.5, y < 0.5, 0.25
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• Uniform convergence: ∀ε > 0 : ∃N : n ≥ N, ∀x : |fn(x)− f(x)| < ε. N depends on ε, not x
Pairwise convergence : ∀x : limn→∞ fn = f , N depends on ε and x : at every point the sequence of functions
has its own speed of convergence

fn(x) =
x
n converge pointwise but not uniformly to 0. N ≥ |x|

ε
• continuity depends on ε and x, uniform continuity only depends on ε
• an + αan−1 + βan−2 = 0, characteristic equation: x2 + αx+ β = 0:
2 roots : an = arn1 + brn2 ; 1 root: an = arn + bnrn

•
∫∞
0

sinx
x dx = π

2
• Intervals are the only connected subsets of R with the usual topology (topology generated by all open inter-
vals)

• The continuous image of a connected space is connected
• A continuous function on an interval is one-to-one ⇔ it is either increasing or decreasing throughout the
interval, it cannot have local extreme values

• There is no continuous map [0, 1] → (0, 1), from Heine-Borel, [0, 1] is compact and its image is compact
• continuous surjection sin2(2πx) maps (0, 1) to [0, 1]
• 1

1+ex maps R → (0, 1)

• Every nonempty compact connected set in R is of the form [a, b]
• all metric spaces are Hausdorff
• f : X → Y , g : Y → Z: if g ◦ f is injective, f is injective. if g ◦ f is surjective, g is surjective
• compact but not connected : Any finite subset of R with 2 or more elements
• connected Hausdorff but not compact : (0, 1)
• compact connected not Hausdorff: [0, 1]

• comparison of ab and ba: eb ln a, ea ln b: e
ln a
a , e

b
b , consider lnx

x .
• two tangent balls are connected subset, but interior are not connected
• closure of a connected set is always connected
• Lipschitz continuous implies uniformly continuous
• sinx is uniformly continuous, sin(x2) is not
•
√
x is uniformly continuous on [0,∞), it is Lipschitz on [1,∞). It is not Lipschitz on (0, 1], it has unbounded

derivatives
• Invariance of domain: image of an open set in R under a continuous injection into R is open
• bounded derivative implies uniform continuity
• f has a vertical asymptote, it is not uniformly continuous

• f(x) =

{
1 x ∈ Q
ex x ̸∈ Q : is discontinuous at any nonzero x, it is continuous at 0!

• Weierstrass function is continuous everywhere but differentiable nowhere

•
∑∞

i=1
k2

k! =
∑∞

i=1
k

(k−1)! =
∑∞

i=1
1

(k−1)! +
∑∞

i=2
1

(k−2)! = 2e

• Schroder-Bernstein theorem: if there exist injective functions f : A → B and g : B → A, then there exists a
bijective function h : A → B

• any path-connected space is connected
• Topologist’s sine curve: T =

{(
x, sin 1

x

)
: x ∈ (0, 1]

}
∪ {(0, 0)} is connected but neither locally connected nor

path connected, there is no way to link the function to the origin so as to make a path. Any open set that
contains (0, 0) must intersect with the other part of the curve, so (0, 0)cannot lie in a disconnected component,
thus it is connected.
sin( 1x) is continuous for nonzero x. limx→0 sin(

1
x) does not exist, there is no way to extend this function by

continuity on 0
• Integral of inverse functions:

∫
f−1(y)dy = yf−1(y)− F (f−1(y))

• Rational density theorem: For any real a and b numbers such that b > a, there exist a rational number x
such that a < x < b: cl(Q) = R

• R \ {π} is a open set containing all rationals.
• Q ∪ (0, 1) is an uncountable set containing all rationals, it is not open
• (x− y)2 is not a metric

• the number of functions from A to B is |B||A|

• |N| = |Z|, |R| = |Rn| = |C|
• |{f : Z → Z}| = |Z||Z| = 2|Z| = |R|
• the number of the set of all finite subset of R is |R|
• the number of all polynomials with coefficient in R is |R|
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• A countable sum of copies of R has the same cardinality as R
• Every continuous real valued function on a compact set attains its minimum and maximum
• Heine-Cantor theorem: a function is continuous on a compact set is uniformly continuous on this set
• Let K be a nonempty subset of Rn, where n ≥ 1. If every continuous real-valued function defined on K is
bounded, then K is compact

• union or finite intersection of open sets is open, infinite intersection of open sets can be closed
• intersection or finite union of closed sets is closed, infinite intersection of closed sets can be open
(every subset on R is a infinite union of closed sets)

• A \B = A ∩Bc, closed\open is closed, open\closed = open
• sin(x2) is everywhere differentiable, bounded, with unbounded derivatives
• S is a subset of [0, 1]× [0, 1] such that x or y or both are irrationals
S is not closed, not compact, not open, it is connected, it is path-connected

• every convergent sequence is bounded
• Bolzano-Weierstrass theorem: each bounded sequence in Rn has a convergent subsequence

• curvature: κ = |r′×r′′|
|r′|3 , for helix r(t) = (a cos t, a sin t, bt), κ = a

a2+b2

•
∫ π
0

sin(100x)
sinx let u = x− π

2 ,
∫ π

2

−π
2

sin 100u
cosu du = 0
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